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Abstract

This paper uses the stochastic dominance approach to study orderings of inter-

dependence for n-dimensional random vectors. Supermodularity (Topkis, 1968) of

an objective function is a natural property to capture a preference for greater in-

terdependence. We characterize the partial ordering on n-dimensional distributions

which is equivalent to one distribution’s yielding a higher expectation than another

for all supermodular objective functions. Though the “supermodular stochastic or-

dering” has previously been characterized for the special case of bivariate distribu-

tions, our results apply to random vectors with an arbitrary number of dimensions,

and exploit duality in polyhedral description of the ordering. In particular, super-

modular dominance is equivalent to one distribution being derivable from another

by a sequence of nonnegative “elementary transformations.” We develop several

methods for determining whether such a sequence exists. For the special case of

random vectors with conditionally i.i.d. components (“mixture distributions”), we

provide sufficient conditions for supermodular dominance; these conditions have a

natural interpretation as a non-parametric ordering of the relative size of aggregate

vs. idiosyncratic shocks. We also characterize the symmetric supermodular ordering

and provide a set of sufficient conditions for symmetric supermodular dominance.

Finally, we describe applications of our approach and results to a range of questions

in welfare economics, matching markets, social learning, insurance, and finance.
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1 Introduction

In many economic contexts, it is of interest to know whether one set of random variables

displays a greater degree of interdependence than another. In this paper, we use the

stochastic dominance approach to study a range of notions of greater interdependence,

focusing particularly on the supermodular stochastic ordering.

The stochastic dominance approach to assessing interdependence relates orderings of in-

terdependence expressed directly in terms of joint probability distributions to orderings

expressed indirectly through properties of objective functions whose expectations are used

to evaluate distributions. Since the expected values of additively separable objective func-

tions depend only on marginal distributions, attitudes towards interdependence must be

represented through non-separability properties. We argue that the property of super-

modularity (Topkis, 1968) of an objective function is a natural property with which to

capture a preference for greater interdependence. Supermodularity of a function captures

the idea that its arguments are complements, not substitutes: When an increasing func-

tion of two or more variables is supermodular and the values of any two variables are

increased together, the resulting increase in the function is larger than the sum of the

increases that would result from increasing one or the other of the values separately. Our

main objective in this paper is to characterize the partial ordering on distributions of

n−dimensional random vectors which is equivalent to one distribution’s yielding a higher

expectation than another for all supermodular objective functions. Following the statis-

tics literature, we refer to this partial ordering as the “supermodular stochastic ordering”

(Shaked and Shanthikumar, 1997).

There are many branches of economics where the supermodular stochastic ordering is a

valuable tool for comparing distributions with respect to their degree of interdependence.

Section 2 describes applications of our methods and results to the assessment of i) ex

post inequality under uncertainty; ii) multidimensional inequality; iii) the efficiency of

matching in the presence of informational or search frictions; iv) the effect of network

structure on conformity of behavior or beliefs in social learning situations; v) the depen-

dence among claims in a portfolio of insurance policies or among assets in a financial

institution’s portfolio.

For the special case of two-dimensional random vectors, the economics and statistics lit-

eratures have provided a complete characterization of the supermodular ordering. Specif-
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ically, Epstein and Tanny (1980) and Tchen (1980), among others, have shown that one

bivariate distribution dominates another according to the supermodular ordering if and

only if the first distribution dominates the second in the sense of both upper-orthant and

lower-orthant dominance. Hu, Xie, and Ruan (2005) have shown that this equivalence

continues to hold in three dimensions in the special case of Bernoulli random vectors, but

the equivalence breaks down for more than three dimensions (Joe, 1990) and even in three

dimensions for larger supports (Müller and Scarsini, 2000). In general, the supermodu-

lar ordering is strictly stronger than the combination of upper-orthant and lower-orthant

dominance.

Focusing on the case where the random vectors to be compared have discrete supports on

a lattice, we characterize the supermodular ordering for more than two dimensions. In

Section 4, we use duality to prove (Theorem 1) that one distribution is preferred to the

other by every supermodular objective function if and only if the first distribution can

be derived from the other by a sequence of nonnegative “elementary transformations”.

Intuitively, our elementary transformations play a similar role to the mean-preserving

spreads defined by Rothschild and Stiglitz (1970) for univariate distributions to capture

the notion of greater riskiness.

In the current context, where our concern is with interdependence between dimensions

rather than with riskiness in a single dimension, our elementary transformations leave

all marginal distributions unaffected. Holding fixed the realizations of n − 2 of the ran-

dom variables comprising the random vector, our elementary transformations increase the

probability that the remaining two variables will take on (relatively) high values together

or (relatively) low values together and reduce the probability that one will be high and

the other low. For multivariate distributions, our elementary transformations provide a

local characterization of the notion of “greater interdependence”. They are a natural

generalization to multivariate distributions of the bivariate “correlation-increasing trans-

formations” defined by Epstein and Tanny (1980). In another sense, though, our definition

of elementary transformations is more restrictive than Epstein and Tanny’s, in that our

transformations affect only adjacent points in the support; because of this restriction, as

we prove (Theorem 3), our transformations are all extreme, in the sense that none can be

expressed as a positive linear combination of the others.

Section 5 shows how our restrictive definition of elementary transformations allows a

simple constructive proof of the known characterization of the supermodular ordering for

bivariate distributions. For any pair of bivariate distributions with identical marginals,
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if we allow elementary transformations to be given weights that are either positive or

negative, then there is a unique weighted sequence of elementary transformations of our

form that converts one distribution into the other. Therefore, two bivariate distributions

can be ranked according to the supermodular ordering if and only if the weights in the

unique sequence are all non-negative.

For pairs of distributions f, g in three or more dimensions, even with our restrictive defi-

nition of elementary transformations (and even confining attention to distributions with

identical marginals), there are many weighted sequences of elementary transformations

that convert one distribution into the other. How, then, can we determine whether g

dominates f according to the supermodular ordering? In Section 6, we develop three

different methods for assessing whether in fact g can be derived from f by a sequence

of elementary transformations with nonnegative weights. The first approach is construc-

tive and builds on the result that none of our elementary transformations is redundant.

This constructive approach allows us, for distributions on supports with small numbers of

nodes, to directly derive inequalities which are necessary and sufficient for supermodular

dominance of g over f to hold.

A second approach is to formulate a linear program, based on the set of elementary

transformations on the discrete support, such that the optimum value of the program is

zero if and only if there exist non-negative weights on elementary transformations that will

convert f to g. This method, like the first approach, has the advantage of constructing an

explicit sequence of elementary transformations. However, it also has the drawback that

one has to solve a different linear program for each pair of distributions to be compared.

Our third method is based on Minkowski’s and Weyl’s representation theorems for polyhe-

dral cones, and it allows us to compute once and for all, for any given support, a minimal

set of inequalities that characterize the stochastic supermodular ordering. This method

can be used for optimization problems such as mechanism design or analysis of optimal

policy, where each mechanism or policy generates a multivariate distribution, and the set

of mechanisms or policies to be compared is large. Specifically, we develop an algorithm,

based on the “double description method” conceptualized by Motzkin et al. (1953) and

developed by Avis and Fukuda (1992) to generate, for any given multidimensional sup-

port, the set of extreme rays of the cone of supermodular functions. Each extreme ray

corresponds to one of the minimal set of inequalities defining the supermodular ordering.

In some applications, it is natural to focus on objective functions that are symmetric.
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Section 7 studies the ordering on distributions that corresponds to one distribution’s gen-

erating a higher expected value than another for all symmetric supermodular objective

functions. We term this ordering the symmetric supermodular ordering and show in The-

orem 5 that two distributions can be ranked according to the symmetric supermodular

ordering if and only if the “symmetrized” versions of the distributions satisfy supermod-

ular dominance. We then use this result to characterize (in Proposition 4) the symmetric

supermodular ordering for any number of dimensions and l points in the support of each

dimension in terms of a closely related ordering on an l − 1-dimensional support. For

n-dimensional random vectors representing n independent lotteries, we identify in Theo-

rem 6 sufficient conditions for symmetric supermodular dominance and show that these

conditions have a natural interpretation in terms of lower dispersion among one set of

lotteries than another.

Section 8 studies the special case of multivariate distributions generated as follows: first,

a univariate probability distribution is drawn randomly, according to some distribution.

Then, all random variables are drawn independently from that common distribution. The

resulting multivariate distribution is a mixture of conditionally i.i.d. random variables.

Since the common distribution is ex ante uncertain, this creates some positive dependence

between the random variables. We compare the interdependence of two random vectors

each of which is a mixture of conditionally i.i.d. random variables. Specifically, we provide

in Theorem 7 sufficient conditions for two (symmetric) mixture distributions to be ranked

according to the supermodular ordering. The sufficient conditions we identify have a

natural interpretation as a non-parametric ordering of the relative size of aggregate vs.

idiosyncratic shocks. At a formal level, moreover, they are very closely related to the

sufficient conditions for symmetric supermodular dominance identified in Theorem 6.

Section 9 extends our approach of using duality results for polyhedral cones to characterize

a range of other stochastic orders. We identify the set of elementary transformations that

correspond to dominance with respect to all objective functions satisfying both supermod-

ularity and componentwise convexity, or supermodularity and full convexity. Convexity

on lattices is a nontrivial concept, and our characterization of it in terms of elementary

transformations is an interesting result in itself.

Section 10 provides a brief discussion of how our approach to assessing interdependence

relates to analyses of copulas, and Section 11 contains concluding remarks.
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2 Applications

Our methods and results are applicable to a wide range of questions in economics and

related fields. Consider first some applications in welfare economics. In many group

settings where individual outcomes (e.g. rewards) are uncertain, members of the group

may be concerned, ex ante, about how unequal their ex post rewards will be (Meyer and

Mookherjee, 1987; Ben-Porath et al, 1997; Gajdos and Maurin, 2004; Kroll and Davi-

dovitz, 2003; Adler and Sanchirico, 2006; Chew and Sagi, 2010). (This concern is distinct

from concerns about the mean level of rewards and about their riskiness.) As argued

by Meyer and Mookherjee (1987), an aversion to ex post inequality can be formalized

by adopting an ex post welfare function that is supermodular in the realized utilities of

the different individuals. We then want to know: Given two mechanisms for allocating

rewards (formally, two joint distributions of random utilities), when can we be sure that

one mechanism generates higher expected welfare than the other, for all supermodular ex

post welfare functions? Our characterization results for the supermodular ordering allow

us to answer this question.

Consider a specific illustration. Intuitively, when groups dislike ex post inequality, tour-

nament reward schemes, which distribute a fixed set of rewards among individuals, one to

each person, should be particularly unappealing, since they generate a form of negative

correlation among rewards: if one person receives a higher reward, this must be accom-

panied by another person’s receiving a lower reward. This intuitive reasoning suggests

the conjecture that tournaments should be dominated, in the sense of the supermodular

ordering, by reward schemes that provide each individual with the same marginal distri-

bution over rewards but determine rewards independently. Meyer and Mookherjee (1987)

proved this conjecture for an arbitrary number of individuals (dimensions), but only for

the special case of a symmetric tournament (one in which each individual has an equal

chance of winning each of the rewards), and their method of proof was laborious. Here,

we allow tournaments to be arbitrarily asymmetric across individuals, and we compare

expected ex post welfare under a tournament with that under the reward scheme which

for each individual yields the same marginal distribution of rewards as he faced under the

tournament but which allocates rewards independently. We show that for all symmetric

supermodular ex post welfare functions, expected welfare is lower under the tournament.

A second application in welfare economics concerns comparisons of inequality or poverty

when separate data are available on different dimensions of economic status, for exam-

6



ple, income, health, and education (Atkinson and Bourguignon, 1982, Bourguignon and

Chakravarty, 2002, and Decancq, 2009). Depending on whether the different attributes are

regarded as complements or substitutes at the individual level, the function aggregating

the attributes into an individual welfare measure will be supermodular or submodular.

Our characterization results for the supermodular ordering provide the conditions un-

der which one multidimensional distribution can be ranked above another for all welfare

measures in the given class. Furthermore, we develop constructive methods for check-

ing supermodular dominance that can be easily applied to the comparison of empirical

distributions.

Another set of microeconomic applications concerns comparisons of the efficiency of two-

sided or many-sided matching mechanisms when the outcomes of the matching process

are subject to frictions. Consider, for example, settings where different categories of work-

ers (e.g. newly-qualified and experienced, or technical and managerial) are matched with

firms. Suppose that workers within each category, as well as firms, are heterogeneous and

that the production function giving the output of a matched set of workers at a given firm,

as a function of the workers’ types and the firm’s type, is supermodular. In the absence of

any frictions, the efficient matching would be perfectly assortative, matching the highest-

quality worker in each category with the highest-quality firm, the next-highest-quality

workers with the next-highest-quality firm, etc. Such a matching would correspond to a

“perfectly correlated” joint distribution of the random variables representing quality in

each category (dimension). When, however, matches are formed based only on noisy or

coarse information (McAfee, 2002), or when search is costly (Shimer and Smith, 2000),

or when signaling is constrained by market imperfections such as borrowing constraints

(Fernandez and Gali, 1999), perfectly assortative matching will generally not arise. In

these settings, our characterization of the supermodular ordering can be used to assess

when one matching mechanism will generate higher expected output than another, for

all supermodular production functions. Fernandez and Gali (1999) and Meyer and Roth-

schild (2004) apply existing two-dimensional results to compare matching institutions, but

multi-dimensional applications remain largely unexplored. One exception is Prat (2002),

but he compares only a perfectly correlated joint distribution with an independent one,

and Lorentz (1953) has shown that the former is preferred to the latter for all supermod-

ular objective functions.

The stochastic supermodular ordering could also prove a valuable tool for studying how

“social structure” influences the degree of interdependence (“conformity”) of individual
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beliefs or choices in social learning situations. Recent studies of communication and

learning in social networks (e.g. Golub and Jackson, 2009, Acemoglu et al, 2008, and

Acemoglu et al, 2009) examine settings in which individuals learn by communicating

with and/or observing the behavior of others, and the social structure that influences

communication and/or observation is described by a network. These studies examine the

limiting beliefs/choices of the community as the number of individuals interacting and/or

the number of periods of interaction grows large, focusing on whether or not the limiting

beliefs/choices match the truth. Particular interest is attached to how the structure of

the network in which individuals are embedded affects the results. The focus on the

limiting cases of infinitely large communities or infinitely repeated interaction is, at least

in part, for tractability. The stochastic supermodular ordering could be used to study

theoretically the degree of interdependence in behavior in finite communities interacting

over a finite number of periods, examining questions such as how changes in the network

structure or in the nature of communication opportunities affect the degree of conformity

of individual beliefs and choices. The supermodular ordering could also prove a useful

tool for analyzing experimental data on interdependence of behavior in social networks

(see, for example, Choi, Gale, and Kariv, 2005 and 2009).

Macroeconomists need to be able to gauge and compare levels of “systematic risk”. At

the level of a single country, this involves assessing the degree of covariation among levels

of output in different sectors, while at the level of the world economy, it involves assessing

the degree of interdependence among output levels in different countries. In both of these

cases, the assessments are naturally multidimensional rather than simply two-dimensional.

Hennessy and Lapan (2003) have proposed using the supermodular stochastic ordering to

make such comparisons.

In the actuarial literature, the supermodular ordering has recently received considerable

attention as a means of comparing the degrees of dependence among claims in a portfolio

of insurance policies (see Müller and Stoyan, 2002, and Denuit, Dhaene, Goovaerts, and

Kaas, 2005). In finance, the supermodular ordering has been proposed as a method for

assessing the dependence among asset returns in a portfolio (Epstein and Tanny, 1980)

and as a method for assessing the interdependence between a single institution’s portfolio

and the market as a whole (Patton, 2009). Moreover, financial economists have recently

shown increased interest in developing measures of interdependence for the components

of the financial system as a whole and not just for individual assets. Brunnermeier and

Adrian (2009), for example, study interdependence among financial institutions, with the
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objective of developing measures of “systemic risk” that capture the degree of comovement

among individual institutions’ entry into states of financial distress.

3 General Setting

This section introduces the general setting analyzed in the paper.

Distribution Support We consider multivariate distributions with the same number,

n, of variables and identical, finite support. Formally, let Li denote the finite, totally

ordered set of values taken by the ith random variable, and let L denote the cartesian

product of Li’s. For all applications, and in what follows, Li is a finite subset of R and L

is a finite lattice of Rn with the following partial order: x ≤ y if and only if xi ≤ yi for all

i ∈ N = {1, . . . , n}. If li denotes the cardinality of Li, then L has d =
∏n

i=1 li elements.

As a specific example, let Ll1,...,ln denote the lattice of Rn with Li = {0, . . . , li− 1}. Thus,

for example, L2,2 consists of the vertices of the unit square in R2 based at the origin:

L2,2 = {0, 1}2. Similarly, L2,2,2 consists of the vertices of the unit cube of R3 based at the

origin: L2,2,2 = {0, 1}3.

For any x ∈ L, let x+ ei denote the element y of L, whenever it exists, such that yj = xj

for all j ∈ N \ {i} and yi is the smallest element of Li greater than but not equal to xi.

For example, in L2,2, (0, 0) + e1 = (1, 0) and (1, 0) + e2 = (0, 0) + e1 + e2 = (1, 1).

Lattice vs. Vector Structures. The lattice structure of the support L and its cor-

responding order is used to compare distributions. In particular, supermodularity of

objective functions is defined with respect to that partial order. One may label the d

elements (or “nodes”) of L and view real functions on L as vectors of Rd, where each

coordinate of the vector corresponds to the value of the function at a specific node of L.

This representation will prove particularly important for dual characterizations of inter-

dependence relations. A multivariate distribution whose support is L (or a subset of L)

can be represented as an element of the unit simplex ∆d of Rd.

Orderings of Multivariate Distributions. For any function w : L→ R and distribu-

tion f ∈ ∆d, the expected value of w given f is the scalar product of w with f , seen as

vectors of Rd:

E[w|f ] =
∑
x∈L

w(x)f(x) = w · f,
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where · denotes the scalar product of w and f in Rd. To any class W of functions on L

corresponds an ordering of multivariate distributions:

f ≺W g ⇔ ∀w ∈ W , E[w|f ] ≤ E[w|g] (1)

The main purpose of this paper is to better understand the orders defined according to

such classes of functions, starting with the stochastic supermodular ordering, which is

based on supermodular functions.

4 The Stochastic Supermodular Ordering

Supermodular Functions and Elementary Transformations For any x, y ∈ L,

denote by x ∧ y the component-wise minimum (or “meet”) of x and y, i.e., the element

of L such that (x ∧ y)i = min{xi, yi} ∈ Li for all i ∈ N . Let x ∨ y similarly denote the

component-wise maximum (or “join”) of x, y. A function w is said to be supermodular

(on L) if w(x∧ y) +w(x∨ y) ≥ w(x) +w(y) for all x, y ∈ L. Supermodular functions are

characterized by the following property (see Topkis, 1968):

w ∈ S ⇔ w(x+ ei + ej) + w(x) ≥ w(x+ ei) + w(x+ ej) (2)

for all i 6= j and x such that x+ ei + ej is well-defined (i.e., such that xi is not the upper

bound of Li and xj is not the upper bound of Lj). For any x ∈ L such that x+ ei + ej is

well-defined, let txi,j denote the function on L such that

txi,j(x) = txi,j(x+ ei + ej) = −txi,j(x+ ei) = −txi,j(x+ ej) = 1 (3)

and txi,j(y) = 0 for all other nodes y of L. We call these functions the elementary trans-

formations on L. Let T denote the class of all elementary transformations.

For example, for L2,2, there is a single elementary transformation, which is defined by

t(1, 1) = t(0, 0) = 1 and t(1, 0) = t(0, 1) = −1. For L2,2,2, there are six elementary

transformations, one corresponding to each face of the unit cube. For L3,3, there are four

elementary transformations, corresponding to the four values of x , namely (0, 0), (1, 0),

(0, 1), and (1, 1), such that x + ei + ej is well defined. Observe that our definition of

elementary transformations confines attention to transformations that i) affect only two

of the n dimensions (as illustrated by the example of L2,2,2) and ii) affect values only at
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four adjacent points in the lattice, x, x+ ei, x+ ej, and x+ ei + ej (as illustrated by the

example of L3,3).

With this notation, (2) can be re-expressed as

w ∈ S ⇔ w · t ≥ 0 ∀t ∈ T . (4)

Now that we have a formal characterization of the class of supermodular functions, we

can formally define the (stochastic) supermodular ordering:

f ≺SPM g ⇔ ∀w ∈ S, E[w|f ] ≤ E[w|g] (5)

If f ≺SPM g, we will say that distribution g is more interdependent than distribution f .

Dual Characterization When does a random vector Y , distributed according to g,

exhibit more interdependence among its components than another random vector X,

distributed according to f? What modifications to the distribution of a random vector

increase interdependence among the random variables composing it? The answer is given

in the following theorem.

Theorem 1 (Supermodular Ordering) f ≺SPM g if and only if there exist nonneg-

ative coefficients {αt}t∈T such that, with f , g, and t seen as vectors of Rd,

g = f +
∑
t∈T

αtt. (6)

Proof. Equation (6) holds if and only if g − f belongs to the convex cone T C generated

by T , i.e., defined by T C = {
∑

t∈T αtt : αt ≥ 0 ∀t ∈ T }. From (4), S is the dual cone of

T C . Since T C is closed and convex, this implies (see Luenberger, 1969, p. 215) that T C

is the dual cone of S. That is,

δ ∈ T C ⇔ w · δ ≥ 0 ∀w ∈ S.

By definition of the stochastic supermodular ordering (see (5)), the above equation exactly

means that f ≺SPM g if and only if g − f ∈ T C , which shows the result. �

Coarsening For many applications, the choice of a particular support seems somewhat

arbitrary. For example, when comparing several empirical distributions of inequality

across various components (such as income, health, and education), the distribution de-

pends on the way data has been aggregated into discrete categories. It is natural, then,
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to ask whether our notion of greater interdependence is robust with respect to further

aggregation. Theorem 1 provides a way to answer this question.

Define a coarsening M of some support L by a partitioning of each Li into Mi, consisting

of mi ≤ li components of consecutive elements of Li. For example, if L = {0, 1, 2, 3} ×
{0, 1, 2}, one possible coarsening of L is M = {{0, 1}, {2, 3}} × {{0}, {1, 2}}. To any

coarsening M of L corresponds a surjective map φ : L → M such that φ(x) = φ(x′) if

and only if xi and x′i belong to the same element yi of Mi for all i. Each element of

M represents a hyper-rectangle resulting from slicing L along (possibly) each dimension.

For any distribution f on L and any coarsening M of L, let fM denote the “coarsened

version” of f , which is defined by

fM(y) =
∑

x∈L:φ(x)=y

f(x).

To indicate dependence with respect to the chosen support, let S(L) denote the set of all

supermodular functions with domain L.

Theorem 2 (Coarsening Invariance) If f ≺S(L) g, then for any coarsening M of

L, fM ≺S(M) g
M .

Proof. Suppose that f ≺S(L) g. By Theorem 1, this implies the existence of nonnegative

coefficients αt such that

g = f +
∑
t∈T (L)

αtt, (7)

where T (L) is the set of elementary transformations on L. Let Φ denote the opera-

tor which to any function w on L associates the function on M defined by Φ(w)(y) =∑
x∈L:φ(x)=y w(x). Φ is a linear operator, and by construction, fM = Φ(f). Applying Φ

to (7) yields

gM = fM +
∑
t∈T (L)

αtΦ(t).

Now observe that for t = txi,j ∈ T (L), Φ(t) belongs to T (M) if φ(x), φ(x+ ei), φ(x+ ej),

and φ(x+ ei + ej) are all distinct, and Φ(t)(y) = 0 for all y ∈M otherwise. Therefore,

gM = fM +
∑

t∈T (M)

αtt,

for some nonnegative coefficients α′. Another application of Theorem 1 then implies that

fM ≺S(M) g
M , which concludes the proof. �
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Thus, if distribution g is more interdependent than distribution f on a given support L,

then on any coarsening M of L, the coarsened version of g, gM , is more interdependent

than the coarsened version of f , fM .

In the next several sections, we develop a range of methods for determining, given a pair

of distributions f and g, whether g is more interdependent than f . These methods apply

the characterization result of Theorem 1 and are greatly facilitated by two aspects of our

approach. The first is our restriction to a finite support L. The second is the manner

in which we have defined the elementary transformations on L, requiring that the trans-

formations affect only two of the n dimensions and affect values at only adjacent points

in the lattice. These two features of our approach imply that it is very straightforward,

either manually or algorithmically, to list the entire set T of elementary transformations

on any given L. Furthermore, given a pair of distributions f, g, when we search for a rep-

resentation of g−f as a nonnegative weighted sum
∑

t∈T αtt, we can be certain that none

of the elementary transformations in T is redundant, as demonstrated by the following:

Theorem 3 All elements of T are extreme rays of T C, the convex cone generated by T .

Proof. Without loss of generality, we prove the claim for L = Ll1,...,ln (other cases are

treated with an obvious modification of the function w below). Consider a point x ∈ L
and a pair of dimensions i, j such that the elementary transformation t∗ ≡ t

x−ei−ej
i,j is

well-defined. Suppose that, contrary to the claim, there exist nonnegative coefficients αs

such that

t∗ =
∑

s∈T \{t∗}

αss. (8)

Let us define the function w on L by w(x) = (3
4
)2
∑
k xk and, for y 6= x, w(y) = 2

∑
k yk . It is

easy to check that w is supermodular. Moreover, w makes a nonnegative scalar product

with all elementary transformations and a positive scalar product with all elementary

transformations except for those whose highest corner is x. Since t∗ is one of the elemen-

tary transformations whose highest corner is x, taking the scalar product of w with both

sides of (8) implies that

0 =
∑

s∈T \{t}

αs(w · s).

This equation in turn implies that αs = 0 for all transformations s except possibly those

whose highest corner is x. However, t∗ cannot be a positive linear combination of only

elementary transformations whose highest corner is x. To see this, observe that any
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elementary transformation s (other than t∗) whose highest corner is x must take value 0

at x− ei − ej, whereas t∗ evaluated at x− ei − ej equals 1. �

For the special case of two dimensions, a stronger result is easily shown: It is impossible

to write any elementary transformation t ∈ T as a sum, with weights of arbitrary sign,

of other elementary transformations in T . However, for three or more dimensions, this

stronger condition does not hold, as the following example demonstrates: For L = {0, 1}3,

t
(0,0,0)
13 = t

(0,1,0)
13 − t(1,0,0)

23 + t
(0,0,0)
23 .

The constructive methods we develop for determining whether a distribution g is more

interdependent than a distribution f also exploit an important implication of the relation

f ≺SPM g, namely that f and g have identical univariate marginal distributions. To see

why this holds, note that for any dimension i ∈ {1, . . . , n} and any k ∈ Li, the functions

w(x) = I{xi≥k} and w(x) = I{xi<k} are both supermodular. Therefore f ≺SPM g implies

that, for all i ∈ {1, . . . , n} and any k ∈ Li,

0 ≤ E[w|g]− E[w|f ] =
∑
x:xi≥k

g(x)−
∑
x:xi≥k

f(x)

and 0 ≤ E[w|g]− E[w|f ] =
∑
x:xi<k

g(x)−
∑
x:xi<k

f(x), (9)

and these inequalities together imply that f and g have identical univariate marginal

distributions. This conclusion also follows from the characterization of Theorem 1, given

that for any elementary transformation t ∈ T and for any α, f +αt and f have the same

marginal distributions.

5 Two Dimensions

Theorem 1 tells us that, given two distributions f, g, determining whether f ≺SPM g is

equivalent to determining whether the difference vector δ = g − f can be decomposed

into a nonnegative weighted sum of elementary transformations. For the special case of

bivariate distributions (n = 2), we now show that, given how we have defined elemen-

tary transformations, this determiniation is extremely simple. Given f, g with identical

marginal distributions and defined on L = Ll1,l2 ≡ {0, . . . , l1 − 1} × {0, . . . , l2 − 1}, the

difference vector δ is fully described by its values at (l1−1)×(l2−1) points (the remaining

values being pinned down by the condition of identical marginals), and there are exactly

(l1 − 1) × (l2 − 1) (linearly independent) elementary transformations defined as in (3).
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Therefore, there is a unique decomposition of δ into a weighted sum of elementary trans-

formations t ∈ T , where the weights αt can have arbitrary signs. Since the decomposition

is unique, f ≺SPM g if and only if the weight on every elementary transformation in the

decomposition is nonnegative.

It is also straightforward to identify the weight on each elementary transformation in

the unique decomposition, as a function of the difference vector δ. To simplify notation,

note that with only two dimensions, given an arbitrary z ∈ L, we can write tz instead

of tzi,j for the elementary transformation defined in (3). Also, let α(z) denote αtz . The

elementary transformation tz is well-defined for z ∈ {0, . . . , l1 − 2} × {0, . . . , l2 − 2} ≡
L(l1−1),(l2−1). With only two dimensions, for any given z ∈ L(l1−1),(l2−1), there are at most

four elementary transformations t ∈ T that take on non-zero values at z: tz, t(z−e1),

t(z−e2), and t(z−e1−e2). If z = (z1, 0), then z − e2 is not well-defined; it is convenient in

this case to say that t(z−e2) is identically 0. Similarly, if z = (0, z2), then z − e1 is not

well-defined, and in this case we say that t(z−e1) is identically 0. With these conventions,

it follows that for any z ∈ L(l1−1),(l2−1),

δ(z) = α(z)tz(z) + α(z − e1)t(z−e1)(z) + α(z − e2)t(z−e2)(z) + α(z − e1 − e2)t(z−e1−e2)(z)

= α(z)− α(z − e1)− α(z − e2) + α(z − e1 − e2), (10)

where the second line follows from the definition of elementary transformations in (3).

A simple inductive process allows us to solve the equations (10) for the weights α(z).

Start with z = (0, 0). Since the only elementary transformation that takes on a non-zero

value on (0, 0) is t(0,0), (10) reduces to δ(0, 0) = α(0, 0). Thus the weight α(0, 0) on t(0,0)

in the unique decomposition of δ is δ(0, 0). Proceed now to z = (1, 0). Since the only two

elementary transformations that take on non-zero values on (1, 0) are t(1,0) and t(0,0), (10)

reduces to δ(1, 0) = α(1, 0)−α(0, 0), and hence α(1, 0) = δ(0, 0)+δ(1, 0). Straightforward

induction arguments then show that for z = (z1, 0), α(z1, 0) =
∑z1

i=0 δ(i, 0); for z = (0, z2),

α(0, z2) =
∑z2

j=0 δ(0, j); and finally for z = (z1, z2), α(z1, z2) =
∑z1

i=0

∑z2
j=0 δ(i, j). If

we define G and F as the cumulative distribution functions corresponding to g and f ,

respectively, then we have G(z1, z2)− F (z1, z2) =
∑z1

i=0

∑z2
j=0 δ(i, j). Thus, in the unique

decomposition of δ = g − f into a weighted sequence of elementary transformations, the

weight α(z) on the transformation tz is the difference G(z)−F (z). Since f ≺SPM g if and

only if every elementary transformation has a nonnegative weight in the decomposition,

it follows that for two dimensions,

f ≺SPM g ⇔ G(z)− F (z) ≥ 0 ∀z ∈ L. (11)
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Note that (11) is written for all z ∈ L and not just for all z ∈ L(l1−1),(l2−1), because identical

marginals is a necessary condition for f ≺SPM g and ensures that for z = (l1 − 1, 0) or

z = (0, l2 − 1), G(z)− F (z) = 0.

For random variables (Y1, . . . , Yn) and (X1, . . . , Xn) with distribution g and f , respectively,

define the survival functions G and F by G(z) = P (Y ≥ z) and F (z) = P (X ≥ z). In

the special case of two dimensions, if g and f have identical marginal distributions, then

G(z)− F (z) = G(z − e1 − e2)− F (z − e1 − e2), so

G(z)− F (z) ≥ 0 ∀z ∈ L ⇔ G(z)− F (z) ≥ 0 ∀z ∈ L. (12)

Joe (1990) has defined a notion of greater interdependence for multivariate distributions

which he terms the “concordance order”: g dominates f according to the concordance

order, written f ≺CONC g, if for all z ∈ L, both G(z) − F (z) ≥ 0 and G(z) − F (z) ≥ 0

hold. For bivariate distributions, by combining (11) and (12) we can conclude that

f ≺SPM g ⇔ f ≺CONC g. (13)

The equivalence between the supermodular order and the concordance order for bivariate

distributions is well known and has been proved by Levy and Parousch (1974), Epstein

and Tanny (1980), and Tchen (1980). The latter two papers both developed constructive

proofs that f ≺CONC g implies f ≺SPM g by defining a notion of a simple “correlation

increasing” transformation.1 Their proofs were considerably more complex than our ar-

gument above, for two reasons. First, they did not restrict their simple transformations

to affect values at only adjacent points in the support. Second, they sought a weighted

sequence of transformations that, when added to distribution f , yielded g and that pro-

duced, after each individual step, a probability distribution. Our Theorem 1 makes clear

that, in searching for a decomposition of g − f into a weighted sum
∑

t∈T αtt, it is ir-

relevant whether or not partial sums of the form f +
∑

t∈U⊂T αtt are actual probability

distributions. And with elementary transformations defined as in (3), the decomposition

of g − f into
∑

t∈T αtt is, for two dimensions, unique, with αtz ≡ α(z) = G(z)− F (z).2

Now

G(z)− F (z) = P (Y ≤ z)− P (x ≤ z) = EI{Y≤z} − EI{X≤z} = Iz · (g − f),

1Levy and Paroush’s proof assumed continuous distributions and used integration by parts.
2In Section 9, we provide an analogous characterization, in a unidimensional setting, of the convex

ordering, also known in economics as the ordering of “greater riskiness”, as characterized by Rothschild

and Stiglitz (1970).
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where Iz(x) ≡ I{x≤z}, the indicator function of the lower-orthant set {x|x ≤ z}. Therefore,

the nonnegativity requirement on the weights αt in the unique decomposition of g−f into∑
t∈T αtt is equivalent to the requirement that, for all z ∈ L, the function Iz(x) have a

higher expectation under g than under f . These indicator functions of lower orthant sets

are in fact the extreme rays of the cone of supermodular functions in two dimensions. An

implication of the uniqueness, in two dimensions, of the decomposition g−f =
∑

t∈T αtt is

that, in this special case, there is a one-to-one mapping associating with each elementary

transformation tz ∈ T the only extreme ray Iz of the cone of supermodular functions with

which the transformation makes a strictly positive scalar product.

For more than two dimensions, however, many decompositions of g−f into weighted sums

of elementary transformations exist, and as a consequence such a one-to-one mapping be-

tween elementary transformations and extreme supermodular functions does not exist. In

addition, for more than two dimensions, the supermodular ordering and the concordance

ordering are no longer equivalent in general. These features make it considerably more

difficult to determine, given a pair of distributions f and g, whether or not f ≺SPM g

when the underlying random vectors (X1, . . . , Xn) and (Y1, . . . , Yn) have three or more

dimensions.

6 Constructive Methods for Comparing Distribution

Interdependence

For three or more dimensions, how can one determine whether f ≺SPM g? We provide

several answers to this question, all of which apply the characterization result in Theorem 1

and Theorem 3’s result that all elementary transformations as defined in (3) are extreme.

The simplest approach involves specifying the sequence consisting of all elementary trans-

formations, with attached weights, and then identifying, by construction, necessary and

sufficient conditions on g−f for the existence of a set of nonnegative weights such that the

weighted sequence sums to g−f . This approach extends that adopted for two dimensions.

However, because for more than two dimensions there is not a unique decomposition of

g − f into a weighted sum of ET’s, it is impossible to apply the simple inductive process

described in Section 5. Nevertheless, direct constructive methods can be used for other

special cases, and they provide a number of insights into the structure of the supermod-

ular ordering in higher dimensions. We have characterized the supermodular ordering in
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several such cases, and present three of them. The first, simplest example is the cube,

that is, the case where L = {0, 1}3. The second example is the case where L = {0, 1}4

and where we confine attention to distributions satisfying a symmetry property that we

term “top-to-bottom symmetry” (defined precisely below). The third example is the case

where L = {0, 1, 2}3 and where we impose a different form of symmetry, symmetry across

dimensions. We defer discussion of this example until Section 7, where we analyze the

symmetric supermodular ordering in detail.

A second approach to determining whether g is more interdependent than f is to formulate

a linear program, based on the set of elementary transformations on L, such that the

optimum value of the program is zero if and only if there exist non-negative coefficients

{αt}t∈T such that g − f =
∑

t∈T αtt. This method, like the first approach, has the

advantage of constructing an explicit sequence of elementary transformations that, added

to f , result in g. However, it also has the drawback that one has to solve a different linear

program for each pair of distributions to be compared.

A third method, based on Minkowski’s and Weyl’s representation theorems for polyhedral

cones, allows one to compute once and for all, for any given support L, a minimal set of

inequalities that characterize the stochastic supermodular ordering, such that f ≺SPM g

if and only if the vector g − f satisfies these inequalities. This method can be used for

optimization problems such as mechanism design or analysis of optimal policy, where each

mechanism or policy generates a multivariate distribution, and the set of mechanisms or

policies is large. In such settings, one must compare many distributions, and this so-called

“double description method” may significantly reduce computations.

6.1 Supermodular Ordering on the Three-Dimensional and Four-

Dimensional Cubes

The material in subsection 6.1 now appears in Meyer and Strulovici (2010).

Consider the case of three dimensions, where each dimension has two points in its support,

i.e., L = {0, 1}3. The difference vector δ = g − f is represented in Figure 1.

Since for f and g to be ranked according to the supermodular ordering it is necessary that

they have identical marginal distributions, once the values of δ(1, 1, 1) ≡ a, δ(0, 1, 1) ≡ b1,

δ(1, 0, 1) ≡ b2, and δ(1, 1, 0) ≡ b3 are specified, the remaining values are determined. For
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L = {0, 1}3, there are six elementary transformations, corresponding to the six faces of

the cube. Denote the transformations on the three upper faces (those faces with (1, 1, 1)

as a vertex) t12, t13, t23, where t12(1, 1, 1) = t12(0, 0, 1) = −t12(0, 1, 1) = −t12(1, 0, 1) =

1, and t13 and t23 are defined analogously. Denote the transformations on the three

lower faces (those with (0, 0, 0) as a vertex) t12, t13, t23, where t12(0, 0, 0) = t12(1, 1, 0) =

−t12(0, 1, 0) = −t12(1, 0, 0) = 1, and t13 and t23 are defined analogously. Also denote

the weight on tij by αij and that on tij by αij. Then a set of six weights {αij, αij}i 6=j
constitutes a weighted decomposition of δ = g − f into a sum of ET’s if and only if

a = α12 + α13 + α23 and ∀i, j, k ∈ {1, 2, 3}, i 6= j 6= k, bi = −αij − αik + αjk. (14)

By adding the first equation in (14) to each of the other three in turn, the four equations

above can be transformed into

a = α12 + α13 + α23 and ∀i, j, k ∈ {1, 2, 3}, i 6= j 6= k, a+ bi = αjk + αjk. (15)

By Theorem 1, f ≺SPM g if and only if there exist nonnegative weights {αij, αij}i 6=j
satisfying (15).

Proposition 1 (Supermodular Ordering on the Three-Dimensional Cube) If

the support L = {0, 1}3, f ≺SPM g if and only if f ≺C g.

Since the indicator functions I{x≥z} and I{x≤z} are both supermodular for all z ∈ L, it

follows, as is well known, that for any support L, f ≺SPM g implies f ≺C g. While Hu,

Xie, and Ruan (2005, pp. 188-9) have proved the reverse implication for L = {0, 1}3

using the tool of “majorization with respect to weighted trees”, we provide here a simple

constructive proof.

Proof. First observe that f ≺C g implies that f and g must have identical marginal

distributions and that, with L = {0, 1}3 and identical marginals, f ≺C g if and only if the

following five inequalities are satisfied by the components of the difference vector δ (as

defined in Figure 1:

a ≥ 0, a+ bi ≥ 0 ∀i ∈ {1, 2, 3}, and 2a+
3∑
i=1

bi ≥ 0. (16)

The first four inequalities above correspond to G(z) − F (z) ≥ 0 for z equal to (1, 1, 1),

(0, 1, 1), (1, 0, 1), and (1, 1, 0), respectively. The fifth corresponds to G(z)− F (z) ≥ 0 for

z = (0, 0, 0), given that f and g must have identical marginals.
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We now show constructively that if δ satisfies the inequalities (16), then there exist non-

negative weights {αij, αij}i 6=j satisfying (15). Set

αij = a

(
a+ bk

3a+
∑3

i=1 bi

)
and αij = (2a+

3∑
i=1

bi)

(
a+ bk

3a+
∑3

i=1 bi

)
. (17)

It is apparent by inspection that the equations (15) are satisfied and that, if the inequalities

in (16) hold, then αij ≥ 0 and αij ≥ 0. Therefore, it follows from Theorem 1 that f ≺C g
implies f ≺SPM g. �

For three dimensions, if there is at least one dimension i for which Li has cardinality

greater than 2, then the supermodular order is strictly stronger than the concordance

order. The following example proves this claim:

EXAMPLE 1: Let L = {0, 1, 2} × {0, 1} × {0, 1} and let f, g have difference vector

g − f = ε(t
(0,0,0)
23 − t

(1,0,0)
23 + t

(2,0,0)
23 ), where ε > 0. It is easy to check that f ≺C g.

However, for the supermodular function w(x) = max{(
∑3

i=1 xi) − 2, 0}, w · (g − f) =

ε(2 · 1 − 1 · 1 − 1 · 1 − 1 · 1) < 0, so it is not the case that f ≺SPM g. This example can

be embedded in any support L strictly larger than L = {0, 1, 2} × {0, 1} × {0, 1} to show

that the same conclusion holds.

For four or more dimensions, Joe (1990) has provided an example showing that the su-

permodular order is strictly stronger than the concordance order, even when for each

dimension i, Li = {0, 1}. In our notation, Joe’s example has g − f = δ = ε(t
(0,0,0,0)
34 −

t
(1,0,0,0)
34 − t(0,1,0,0)

34 + t
(1,1,0,0)
34 ) and w(x) = 1

2
|(
∑4

i=1 xi)− 1|.

Nevertheless, the insight behind our constructive proof of Proposition 1 for the three-

dimensional cube can be extended to characterize the supermodular ordering for larger

supports, as we now illustrate for the case where L = {0, 1}4.

Consider four-dimensional random vectors with support L = {0, 1}4, and for simplicity

confine attention to random vectors whose distributions satisfy a symmetry condition we

term “top-to-bottom symmetry”: For any z ∈ {0, 1}4, P (X = z) = P (X = 1−z). Top-to-

bottom symmetry arises naturally in various matching settings. For example, let the four

dimensions represent managers, supervisors, workers, and firms, and suppose that for each

dimension, there is one representative (individual or firm) with high quality (zi = 1) and

one with low quality (zi = 0). Production requires forming a “team” consisting of exactly

one manager, one supervisor, one worker, and one firm, and the output of such a team is

a supermodular function of the qualities of each of its four components. Supermodularity
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of the production function implies that it would be output-maximizing for the four high-

quality individuals/firm to be matched and for the four low-quality individuals/firm to be

matched. However, informational frictions may prevent such an outcome being reached

and cause the matching process to be stochastic. Nevertheless, as long as the stochastic

process is certain to generate two teams, each consisting of one representative from each

dimension, the distribution over teams satisfies “top-to-bottom symmetry”. For such a

setting, we now construct a set of inequalities for two distributions over teams (i.e., two

matching processes) which are necessary and sufficient for one distribution to generate

higher expected output than the other, for all supermodular functions.

Let the random vectors X and Y have distributions f, g on L = {0, 1}4 satisfying top-to-

bottom symmetry. For any such f, g the difference vector δ = g − f can be represented

as in Figure 2. Note that the assumption of top-to-bottom symmetry implies that f and

g have identical marginal distributions and that for all i, P (Xi = 1) = P (Yi = 1) = 1/2.

A construction analogous to that used for the three-dimensional cube allows us to prove:

Proposition 2 (Supermodular Ordering on the Four-Dimensional Cube) If

the support L = {0, 1}4 and f and g satisfy top-to-bottom symmetry, then f ≺SPM g if

and only if

P (
4∑
i=1

Yi = 4) ≥ P (
4∑
i=1

Xi = 4),

2P (
4∑
i=1

Yi = 4) + P (
4∑
i=1

Yi = 3) ≥ 2P (
4∑
i=1

Xi = 4) + P (
4∑
i=1

Yi = 3),

and∀i 6= j, P (Yi = 1, Yj = 1) ≥ P (Xi = 1, Xj = 1).

In terms of the components of the difference vector δ, as defined in Figure 2, the inequal-

ities in Proposition 2 correspond to

a ≥ 0, 2a+
4∑
i=1

bi ≥ 0, and a+ bi + bj + cij ≥ 0 ∀i, j ∈ {1, 2, 3, 4}, i < j.

Since in the example from Joe (1990) described above, f and g satisfy top-to-bottom

symmetry, that example shows that even when we restrict attention to distributions sat-

isfying top-to-bottom symmetry, the supermodular ordering on the four-dimensional cube
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is strictly stronger than the concordance ordering. The same conclusion follows from ob-

serving that there is no z ∈ {0, 1}4 for which the second inequality in Proposition 2 can

be rewritten as G(z)− F (z) ≥ 0 or G(z)− F (z) ≥ 0.

6.2 The Linear Programming Approach: Comparing Two Spe-

cific Distributions

From Theorem 1, f ≺SPM g if and only there exist nonnegative coefficients {αt}t∈T such

that g−f =
∑

t∈T αtt. Given a specific pair of distributions f and g, we can formulate the

problem of determining whether such a set of coefficients exists as a linear programming

problem. Let τ = |T | denote the number of elementary transformations on L, and let

E denote the d× τ -matrix whose columns are the d-dimensional vectors consisting of all

elementary transformations of L. Theorem 1 can be re-expressed as f ≺SPM g if and only

if there exists α ∈ Rτ such that i) α ≥ 0 and ii) Eα = g−f . Now define the d-dimensional

vector δ+ such that δ+
i = |(g− f)i|, and let E+ denote the matrix whose ith row, denoted

E+
i , satisfies E+

i = (−1)εiEi, where εi = 1 if (g − f)i < 0 and 0 otherwise. The condition

Eα = g−f can be re-expressed as E+α = δ+. Now consider the following3 linear program

(A):

min
(α,β)∈Rτ×Rd

d∑
i=1

βi

subject to

E+α + β = δ+, α ≥ 0, β ≥ 0.

Theorem 4 (Pairwise Comparison) The linear program (A) always has an optimal

solution. f ≺SPM g if and only if the optimum value is zero, and in that case g =

f +
∑

t∈T α
∗
t t, where (α∗, β∗) is any minimizer of (A) and β∗ = 0.

Proof. There always exists a feasible vector (α, β), namely (α, β) = (0, δ+). Moreover,

the value function is nonnegative since the feasibility constraints require that β have

nonnegative components, and therefore the optimum is nonnegative. If f ≺SPM g, there

exists α∗ ≥ 0 such that E+α∗ = δ+, so the optimum value of program (A) must indeed be

zero, since that value is achieved by (α, β) = (α∗, 0). Reciprocally, if there exists (α∗, β∗)

such that the value of the program is zero, then necessarily β∗ = 0 and E+α∗ = δ+. �

3This corresponds to the auxiliary program for the determination of a basic feasible solution described

in Bertsimas and Tsitsiklis (1997, Section 3).
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6.3 The Double Description Method

The linear programming approach just described has the drawback of requiring a new

program to be solved each time a new pair of distributions is to be compared. When many

distributions are to be compared, for example as part of a larger optimization problem, it is

more convenient to have an explicit representation of the stochastic supermodular ordering

for the common support of these distributions. We now provide such a representation in

the form of a list of inequalities that are satisfied by the vector g − f if and only if

f ≺SPM g. For any given finite support L, these inequalities are computed once and for

all, a computation which is made possible by the support’s finiteness.

Recall that f ≺SPM g if g− f makes a nonnegative scalar product with all supermodular

functions on L, seen as vectors of Rd. This condition can be reduced to a finite set of

inequalities by exploiting the geometric properties of S. S is a convex cone characterized

by the fact that w is supermodular (i.e., belongs to S) if and only if it makes a nonnegative

scalar product with all elementary transformations on L. In matrix form, S = {w ∈ Rd :

Aw ≥ 0}, where A = E ′ is the matrix whose rows consist of all elementary transformations

(i.e., the transpose of the matrix E introduced earlier). A is called the representation

matrix of the polyhedral cone S. Minkowski’s theorem states that to any representation

matrix corresponds a generating matrix R such that

Ax ≥ 0 ⇔ x = Rλ for some λ ≥ 0.

The columns of the matrix R are the extreme rays of the cone S. There exists a finite

number of such extreme rays. The stochastic supermodular ordering is entirely determined

by the extreme rays:

E[w|f ] ≤ E[w|g] ∀w ∈ S ⇔ R′(g − f) ≥ 0.

Minkowski’s theorem thus proves the existence, for any finite support L, of a finite list

of inequalities that entirely characterize the stochastic supermodular ordering on L. How

can we determine the extreme rays of the cone of supermodular functions? The dou-

ble description method, conceived by Motzkin et al. (1953) and implemented by Fukuda

and Prodon (1996) and Fukuda (2004), builds on Minkowski’s and Weyl’s representation

theorems for polyhedral cones. A polyhedral cone can be represented either by a set of

inequalities (i.e., by the intersection of a number half-spaces) or by extreme rays. The

double description method provides an algorithm to determine one description from the

other. Luckily, the set of elementary transformations is trivially computable, and can be

23



automatically generated for any given support L. From this input, the double description

method can compute the set of extreme supermodular functions. Using Fukuda’s algo-

rithm for the double description method, we have computed the stochastic supermodular

order for a range of problems that are intractable by hand. In the Appendix, we illustrate

the method for the case where L = {0, 1}4 and no symmetry assumptions of any sort are

imposed.

Complexity of the Double Description Method Although the double description

method is very useful in theory, its computational complexity is unsurprisingly exponential

in the size of L. Keeping in mind the potential applications of the stochastic supermodular

ordering, we now provide an exact computation of the algorithm’s complexity.

Avis and Bremner (1995) show that the double description algorithm described by Motzkin

et al. (1953) has complexity O(pbd/2c) where d is the dimension of the space and p is

the number of inequalities defined by the representation matrix. Given a finite lattice

L = ×ni=1Li of Rn with |Li| = li, the dimension of the vector space generated by associat-

ing a dimension to each node of L is d =
∏n

i=1 li. To compute the number p of inequalities,

first recall Theorem 3, which states that all of the elementary transformations t ∈ T are

extreme, so it is impossible to reduce the number of inequalities required to check super-

modularity by removing redundant elementary transformations. Therefore, p equals the

number of elementary transformations on L, which it is straightforward to calculate:

p =
∑

1≤i<j≤n

(li − 1)(lj − 1)Πk/∈{i,j}lk.

Suppose, for example, that li is exactly l for each of the n dimensions. Then p = n(n−1)
2

(l−
1)2ln−2 ∼ n(n−1)

2
ln and d = ln. Therefore, the complexity of the double description method

is O(exp(ln(n log l+2 log n))). In practice, therefore, the stochastic supermodular ordering

can only be computed via this method for “small-size” problems. However, the “size” of

a problem can be reduced by aggregating data into coarser categories. As Theorem 2

showed, aggregation of data preserves the supermodular ordering. Therefore, despite its

potential complexity, the double description method can in practice easily be used in

conjunction with data coarsening to achieve a tractable comparison of distributions.
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7 Symmetric Supermodular Ordering

In many contexts, it is natural to assume that the supermodular objective functions be-

ing used to compare distributions are symmetric with respect to the components of the

random vectors. We now define the symmetric supermodular ordering, show formally

(Theorem 5) how it relates to the supermodular ordering, and provide some characteri-

zation results (Propositions 3 and 4). Theorem 6 develops useful sufficient conditions for

the symmetric supermodular ordering to hold and applies these results to some welfare-

economic and contract-theoretic examples.

Call a lattice L = ×ni=1Li symmetric if Li = Lj for all i 6= j. For a symmetric lattice, let

the cardinality of Li equal l, so the lattice has d = ln nodes. Let θ denote a real function

on a symmetric lattice L, or equivalently a vector of Rd. Depending on the context, θ

can represent an objective function w or a probability distribution f . We will say that

the function θ is symmetric on L if θ(z) = θ(σ(z)) for all z ∈ L and for all permutations

σ(z) of z.

For distributions g and f on a symmetric lattice L, we will say that g dominates the

distribution f according to the symmetric supermodular ordering, written f ≺SSPM
g, if and only if E[w|f ] ≤ E[w|g] for all symmetric supermodular functions w on L.

For an arbitrary (not necessarily symmetric) function θ, the symmetrized version of θ,

θsymm, is defined as follows: for any z,

θsymm(z) =
1

n!

∑
σ∈Σ(n)

θ(σ(z)), (18)

where Σ(n) is the set of all permutations of {1, . . . , n}. Importantly, if w is a supermodular

function, then wsymm is supermodular. For a symmetric supermodular function w, let

Wsymm(w) denote the set of supermodular functions ŵ on L such that the symmetrized

version of ŵ is w, i.e., ŵsymm = w. Note that {Wsymm(w)} is a partition of the set of all

supermodular functions on the symmetric lattice L.

We can now state the following useful result:

Theorem 5 Given a pair of distributions f, g defined on L, the following three statements

are equivalent:

i) f ≺SSPM g;
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ii) f s ≺SSPM gs;

iii) f s ≺SPM gs.

Proof. To show that i) ⇒ ii) ⇒ iii): If for all symmetric supermodular w, w · f ≤ w · g,

then for all symmetric supermodular w, w · f s ≤ w · gs. This is ii). In turn, if for some

symmetric supermodular w, w · f s ≤ w · gs, then ŵ · f s ≤ ŵ · gs for all ŵ ∈ Ws(w).

Therefore, w · f s ≤ w · gs for all symmetric supermodular w implies that ŵ · f s ≤ ŵ · gs

for all supermodular ŵ, which is iii).

To show that iii)⇒ i): If for all supermodular w, w ·f s ≤ w ·gs, then for all supermodular

w, ws · f s ≤ ws · gs. This is equivalent to ws · f s ≤ ws · gs for all symmetric supermodular

ws. This in turn implies that for all symmetric supermodular ws, ws · f ≤ ws · g. �

In words, Theorem 5 states that one can characterize the symmetric supermodular order in

terms of the supermodular order applied to symmetric distributions. Furthermore, when

attention is restricted to symmetric distributions, the supermodular order is equivalent

to the symmetric supermodular one. Theorem 5 can be used to simplify the analysis of

the symmetric supermodular ordering by focusing on symmetric distributions.

This theorem is also important with respect to some economic applications of the theory,

particularly welfare analysis. Indeed, focusing on symmetric ex post objective functions

amounts to assuming a form of ex post anonymity across individuals: one does not care

whether 1 got the high prize and 2 the low prize, or vice versa. However, it does not

impose anything on the ex ante fairness of mechanisms. For example: a mechanism that

randomizes with equal probability between giving the high prize to 1 and low prize to 2

or vice versa yields the same expected ex post welfare as a mechanism that always gives

1 a high prize and 2 a low one. A justification for the focus on symmetric distributions

is precisely that we can make any mechanism fair ex ante by randomizing equally across

all possible player permutations before applying the initial mechanism. In that sense,

symmetry provides both an ex post anonymous and ex ante anonymous mechanism.

In the analysis to follow, we will mostly focus on the symmetric supermodular ordering,

keeping in mind the interpretation in terms of symmetrized distributions provided by

Theorem 5.
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7.1 Binary Variables, n Dimensions

Consider the hypercube L = {0, 1}n. With symmetric objective functions, only the num-

ber of 1’s, c(x) =
∑n

i=1 I{xi=1}, contained in any x matters for the objective. Thus, an

equivalent representation of L is L̃1 = {0, 1, . . . , n}. To any distribution f on L we can

associate a distribution f̃ on L̃1 defined by f̃(k) =
∑

x:c(x)=k f(x) for each k ∈ L̃1. Sim-

ilarly, to any symmetric function w : L → R, corresponds another function w̃ : L̃1 → R
such that w(x) = w̃(c(x)).

Moreover, w is symmetric and supermodular on L if and only if w̃ is convex on L̃1. To

prove this, note that supermodularity of w is equivalent to w(x) + w(x + ei + ej) ≥
w(x + ei) + w(x + ej), for all nodes x with zero ith and jth components. Symmetry of w

then allows us to write the inequality as w̃(k) + w̃(k + 2) ≥ 2w̃(k + 1), where k = c(x).

Since this holds for all k ∈ {0, 1, . . . , n − 2}, this shows convexity of w̃. The reverse

implication is proved similarly. An alternative method of proof, which will be generalized

in the following subsection, is to use duality: recall from Theorem 1 that supermodular

functions are characterized by the dual cone of elementary transformations, txi,j, as defined

in (3). When the transformation txi,j, defined on L, is projected onto L̃1, the result is an

elementary transformation of the form t̃k such that t̃k(k) = t̃k(k+ 2) = 1, t̃k(k+ 1) = −2,

and t̃k(y) = 0 for all other y ∈ L̃1, where k = c(x). Such a function t̃k is an elementary

transformation characterizing convexity on a one-dimensional, equally-spaced grid (see

Section 9). Since their dual cones are equivalent, it follows therefore that symmetric

supermodular functions on L are equivalent to convex functions on L̃1.

This shows a key relation between supermodularity and convexity:

Proposition 3 On L = {0, 1}n, f ≺SSPM g if and only if g̃ dominates f̃ according to

the convex ordering on L̃1.

7.2 l-Point Supports and n Dimensions

Now consider the case L = {0, 1, . . . , l − 1}n, and for k ∈ {1, . . . , l − 1} and x ∈ L,

define c̄k(x) =
∑n

i=1 I{xi≥k} and c̄(x) = (c̄1(x), . . . , c̄l−1(x)). c̄k(x) counts the number

of components of x that are at least as large as k, and c̄(x) is the “cumulative count

vector” corresponding to x. The vector c̄(x) lies in L̃l−1, an (l − 1)-dimensional subset

of {0, 1, . . . , n}l−1. Any function w : L → R that is symmetric can be expressed as a
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function w̃ : L̃l−1 → R such that w(x) = w̃(c̄(x)). To any distribution f on L we can

associate a distribution f̃ on L̃l−1 defined by f̃(y) =
∑

x:c̄(x)=y f(x) for each y ∈ L̃l−1.

To generalize Proposition 3, we need the following definition:

A function w̃ on L̃l−1 is componentwise-convex if for any y ∈ L̃l−1 and k = {1, 2, . . . , l −
1} such that y + 2ek ∈ L̃l−1, w̃(y) + w̃(y + 2ek) ≥ 2w̃(y + ek).

4 Equivalently, w̃ on

L̃l−1 is componentwise-convex if and only if it makes a positive scalar product with any

elementary transformation defined by a function tyk on L̃l−1 such that

tyk(y) = tyk(y + 2ek) = 1 tyk(y + ek) = −2, (19)

and tyk(z) = 0 for all other z ∈ L̃l−1.

Proposition 3 can now be generalized to

Proposition 4 On L = {0, 1, . . . , l − 1}n, f ≺SSPM g if and only if g̃ dominates f̃

according to the supermodular and componentwise-convex ordering on L̃l−1.

Proposition 4 is proved by showing that w is symmetric and supermodular on L if and

only if w̃ is supermodular and componentwise-convex on L̃l−1.5 To show this, we use

the dual approach and show that any “supermodular” elementary transformation txi,j on

L, as defined in (3), maps either into a “supermodular” elementary transformation on

L̃l−1 or into an elementary transformation on L̃l−1 of the form in (19) characterizing

componentwise-convexity. For transformations txi,j such that c̄(x + ei) = c̄(x + ej), there

exists a k ∈ {1, . . . , l − 1} such that c̄(x + ei) = c̄(x + ej) = c̄(x) + ek and c̄(x + ei +

ej) = c̄(x) + 2ek; therefore, such transformations on L map into transformations on

L̃l−1 of the form in (19). For transformations txi,j such that c̄(x + ei) 6= c̄(x + ej), there

exist k,m ∈ {1, . . . , l − 1} such that c̄(x + ei) = c̄(x) + ek, c̄(x + ej) = c̄(x) + em,

and c̄(x + ei + ej) = c̄(x) + ek + em; therefore, these transformations on L map into

transformations on L̃l−1 of the form in (3).

Meyer and Strulovici (2010) provide an explicit characterization of the symmetric super-

modular ordering for the case of three dimensions with three points in the support for

each dimension.

4See Section 9 for more detail.
5Since L̃l−1 is not a lattice, we say that w̃ is supermodular if, whenever y and z belong to L̃l−1

and are such that y ∧ z and y ∨ z also belong to L̃l−1, where the meet and join operate on Rl−1,

w̃(y ∧ z) + w̃(y ∨ z) ≥ w̃(y) + w̃(z).
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Propositions 3 and 4 are useful because, even as the dimension of the underlying support

L increases, the dimensions of the derived supports L̃1 and L̃l−1 remain unchanged.

7.3 Sufficient Conditions for the Symmetric Supermodular Or-

dering

Let A and B denote two n×m row-stochastic matrices, i.e., matrices such that each row

has nonnegative components which sum to 1. Also suppose that for each j ≤ m, the jth

column of A and B have equal sum.

For concreteness, think of each row of A as describing the lottery among m prizes to

some individual i, for i ≤ n. The first column corresponds to the lowest prize, the second

column to the second-lowest, etc. Let these lotteries be independently distributed across

individuals. Thus Ai,j is the probability that i receives prize j independently of what

others receive. We will call X and Y the random vectors of prizes that individuals receive

under distributions defined by A and B, respectively.

For an arbitrary row-stochastic matrix Q, let Q̄ denote the cumulative sum matrix of

Q, defined by Q̄i,j =
∑m

k=j Qi,k. There is a one-to-one mapping between row-stochastic

matrices and their cumulative-sum equivalents, so slightly abusing notation we will use

Ā ≺SSPM B̄, A ≺SSPM B, and X ≺SSPM Y equivalently.

Say that Q is stochastically ordered if for each k, Q̄i,k is weakly increasing in i. This is

equivalent to the requirement that for all i ∈ {2, . . . , n}, the ith row of Q dominates the

(i− 1)th row in the sense of first-order stochastic dominance. Intuitively, this means that

under the distribution described by Q, high-index individuals are more likely to receive

high prizes.

Given an arbitrary row-stochastic matrix Q and its associated cumulative sum matrix

Q̄, define Q̄so as the matrix obtained from Q̄ by reordering each of its columns from the

smallest to the largest element. If Q is stochastically ordered, then Q̄so = Q̄. We will say

that A dominates B according to the cumulative column majorization criterion, denoted

A �CCM B, if for all k, the kth column vector of Ā majorizes6 the kth column vector of

6A vector a majorizes a vector b if i) the vectors have identical sums, and ii) for all k, the sum of the

k largest entries of a is weakly greater than the sum of the k largest entries of b (see Hardy, Littlewood,

and Polya (1952)).

29



B̄. That is, A �CCM B if for each k ∈ {1, . . . ,m} and for each l ∈ {1, . . . , n}

n∑
i=l

Āsoi,k ≥
n∑
i=l

B̄so
i,k,

with equality holding for l = 1.

Theorem 6 Let A and B be two n×m row-stochastic matrices such that, for each j ≤ m,

the jth column of A and B have equal sums. If A is stochastically ordered and A �CCM B,

then X ≺SSPM Y .

There are several ways to interpret and apply Theorem 6. Recall that Theorem 5 showed

that the statements f ≺SSPM g and f s ≺S gs are equivalent. In this context, this means

that using the symmetric supermodular order to compare the distributions generated

by the independent lotteries over prizes described by matrices A and B is equivalent to

using the supermodular order to compare the symmetrized versions of these distribu-

tions. Importantly, the symmetrized versions of these distributions are not independent,

so supermodular dominance of one symmetrized distribution over another reflects greater

interdependence of the former over the latter. Thus, the original comparison of indepen-

dent distributions according to the symmetric supermodular ordering can be interpreted

as a comparison of interdependence of symmetrized distributions. Theorem 6 provides a

sufficient condition for the symmetrized version of the distribution generated by the set

of lotteries in matrix B to display greater interdependence than the symmetrized version

of the distribution generated by A.7

To illustrate this interpretation of the theorem, suppose that m = n (the number of

prizes equals the number of individuals) and that we focus on matrices A and B that

are bistochastic, i.e., both their rows and their columns all sum to 1. A tournament is a

mechanism that allocates, according to some random process, the n prizes to the n indi-

viduals in such a way that each individual receives exactly one prize. Any tournament is

fully described by the probability it assigns to each of the n! possible prize allocations,

and a tournament can be summarized by a bistochastic matrix Q, where the ith row of

7Hu and Yang (2004, Thm. 3.4) showed that for any stochastically ordered row-stochastic matrix A,

the symmetrized version of the distribution of X (which is not in general independent) is supermoduarly

dominated by the independent symmetric distribution with identical marginals to the symmetrized version

of X. (In fact, Hu and Yang proved this result by showing something stronger, that the symmetrized

version of the distribution of X displays negative association.) Hu and Yang’s result for supermodular

dominance corresponds to the special case of Theorem 6 where the rows of the matrix B are all identical.
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Q describes individual i’s marginal distribution over the n prizes. A symmetric tourna-

ment is one in which each of the n! possible prize allocations is equally likely, and such a

tournament is summarized by the bistochastic matrix all of whose entries are 1/n. Given

an arbitrarily asymmetric tournament and the bistochastic matrix Q which summarizes

the marginal distributions it generates, consider the reward scheme which gives each indi-

vidual the same marginal distribution over rewards as he receives in the tournament but

which determines rewards independently. We term this reward scheme the “randomized

independent scheme” (RIS) associated with the given tournament. Theorem 6 implies

that given any asymmetric tournament, the associated RIS generates a distribution over

rewards that dominates the distribution generated by the tournament according to the

symmetric supermodular ordering.

To see why this conclusion follows from the theorem, let A be the n×n identity matrix and

B the bistochastic matrix summarizing the marginal distributions over prizes generated

by an arbitrary asymmetric tournament T . What is the symmetrized version of the dis-

tribution generated by the independent (degenerate) lotteries in A? It is the distribution

which assigns probability 1/(n!) to each of the n! possible allocations of prizes to individ-

uals in any tournament. This symmetric distribution is in fact the symmetrized version

of the distribution of prizes resulting from any, arbitrarily asymmetric tournament. The

symmetrized version of the distribution generated by B is the symmetrized version of the

distribution of prizes under the RIS associated with the original tournament T . When

the matrix A is the identity matrix, it is clearly stochastically ordered, and it also clearly

dominates any other bistochastic matrix according to the cumulative column majoriza-

tion criterion. Therefore, the symmetrized version of the distribution generated by A is

supermoduarly dominated by the symmetrized version of the distribution generated by

B. Equivalently, for any symmetric supermodular objective function, expected welfare is

lower under any arbitrary tournament than under the RIS associated with it.

Theorem 6 has applications outside the welfare-economic context discussed above. Sup-

pose that row i of the row-stochastic matrix Q now represents the distribution of output

on the ith of n tasks over the m possible output levels, indexed by j, and suppose that

output levels on the different tasks are independently distributed. Suppose that the pro-

duction function is supermodular in the output levels on the different tasks, reflecting the

fact that tasks are complementary inputs, and suppose also that tasks are identical ex

ante, so the production function is symmetric with respect to the vector of task outputs.

Two row-stochastic matrices with matching column sums then describe two different pro-
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duction settings in which, for each possible output level, the average probability (over all

tasks) of its being realized is the same. Theorem 6 then identifies conditions under which

expected production is higher in one setting than another for all symmetric supermodular

production functions.

Bond and Gomes (2009) have recently analyzed a special case of the setting just described.

An agent chooses levels of effort {ei} on n tasks, where ei ∈ [e, e]. For each task, output

is either success or failure, and by exerting effort ei on task i, the agent incurs total effort

cost
∑n

i=1 ei and produces a probability of success on task i of ei. Given the effort choices,

the outputs are independently distributed. The principal’s benefit is a convex function of

the total number of successes. Bond and Gomes ask, for a given total amount of effort∑n
i=1 ei < n (and, hence, given total cost of effort), what is the socially efficient allocation

of effort across tasks? They show that it is socially efficient for the agent to exert equal

effort on all tasks. However, under any incentive scheme rewarding him as a function of

the total number of successes achieved, the agent will choose either the minimum (e) or

the maximum (e) level of effort on each task. Bond and Gomes show that, given the total

amount of effort exerted, the allocation chosen by the agent actually minimizes expected

social surplus.

The two conclusions summarized above follow from Proposition 3 and Theorem 6. With

binary output levels on the tasks and a benefit function for the principal that is symmetric

across tasks, the benefit function can be described either as a convex function of the total

number of successes or as a symmetric supermodular function of the vector of task outputs.

The effort allocation determines an n×2 row-stochastic matrix, the first column of which

is the vector of success probabilities on the n tasks, and holding the total level of effort

fixed corresponds to ensuring that any matrices being compared have matching column

sums. In the special case where m = 2, any row-stochastic matrix can be converted

into a stochastically ordered one by reordering rows (an operation which will have no

effect on the expected value of a symmetric objective function). Therefore, with m = 2,

we can deduce from Theorem 6 that, holding total effort fixed, if one effort allocation

corresponds to a vector of success probabilities that majorizes the vector corresponding

to another allocation, then the former allocation generates lower expected social surplus,

for all symmetric supermodular benefit functions. The final step is to observe that a

vector of success probabilities in which all entries are equal is majorized by all vectors

with the same total over entries; and a vector in which all probabilities are either 0 or 1
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majorizes all vectors with the same total (which are not permutations of it).8

We have examples showing that Theorem 6 does not hold if we relax either the assumption

that A is stochastically ordered or that A �CCM B.

Theorem 6 has the following useful corollary, which is proved in the Appendix.

Corollary 1 For any n and any m-dimensional probability vector p, there exists a

unique n × m row-stochastic matrix A′ whose jth column, for each j, sums to npj and

such that A′ ≺SSPM B for all n × m row-stochastic matrices B with the same column

sums as A′.

In settings where the objective function is symmetric and supermodular, the corollary

identifies, within the class of distributions generated from row-stochastic matrices as

described above, the worst distribution. Equivalently, where the objective function is

symmetric and submodular, the corollary identifies the optimal distribution within the

specified class. For arbitrary n, m, and probability vector p, the matrix A′ identified

by the corollary is the one in which the lotteries described by the rows are as disparate

as possible, subject to their average equaling the vector p. In the welfare-economic con-

text described above, the matrix A′ is the one that treats individuals as differently as is

consistent with the constraint on the average distribution of rewards. In the production

context, the matrix A′ is the one in which the resources allocated to the various tasks are

as different as is feasible, given the overall resource constraint.

8 Using the Supermodular Ordering to Compare In-

terdependence of Mixture Distributions

Consider multivariate distributions generated as follows: first, a univariate probability

distribution is drawn randomly, according to some distribution. Then, all random vari-

ables are drawn independently from that common distribution. The resulting multivariate

distribution is a mixture of conditionally i.i.d. random variables. Since the common dis-

tribution is ex ante uncertain, this creates some positive dependence between the random

8Bond and Gomes’s results follow from a result due to Karlin and Novikoff (1963), which is the special

case of Theorem 6 when m = 2.
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variables.9 Intuitively, learning that Xi = k raises the posterior probability that the com-

mon distribution is one which assigns high probability to k, and hence makes it more

likely that Xj = k for j 6= i. This section compares the interdependence of two random

vectors each of which is a mixture of conditionally i.i.d. random variables. Specifically,

we provide sufficient conditions for two (symmetric) mixture distributions to be ranked

according to the supermodular ordering. The sufficient conditions we identify have a

natural interpretation as a non-parametric ordering of the relative size of aggregate vs.

idiosyncratic shocks.

The results of this section are useful in finance and insurance contexts, where mixtures of

conditionally i.i.d. random variables are frequently used to model positively dependent

risks in a portfolio: the realization of the common distribution represents an aggregate

shock or common factor which affects all the elements of the portfolio (see, for example,

Cousin and Laurent, 2008). Our results also have applications in macroeconomics, where

assessments of the relative importance of aggregate vs. sectoral shocks are of importance

for understanding variation and covariation of output levels (see, for example, Foerster,

Sarte, and Watson, 2008).

Consider a univariate distribution on the support {0, . . . , l − 1}, described by its upper

cumulative vector p̄, i.e., p̄k = Pr[X ≥ k]. Let (X1, . . . , Xn) be i.i.d. variables with

distribution p̄. Given a supermodular objective function w on Rn, define uw(p̄) by

uw(p̄) = E[w(X1, X2, . . . , Xn)|p̄].

The function uw is defined on a convex subset of the vector space Rl, and inherits some

properties from the supermodularity of w, as shown in the following.

Proposition 5 If w is supermodular, uw is supermodular and componentwise convex.

Proof. Changing any component p̄k affects all random variables and hence has a compli-

cated effect on uw. To prove the result, it is therefore useful to consider, as an intermediate

step, a more general domain where each of the independent variables Xi has its own dis-

tribution vector p̄i on the support {0, . . . , l − 1}. Accordingly, define

vw(p̄1, . . . , p̄n) = E[w(X1, . . . , Xn)|p̄1, . . . , p̄n].

We use the following lemma.

9Shaked (1977) defines such random variables as “positively dependent by mixture”.
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Lemma 1 For any supermodular w, vw(p̄1, . . . , p̄n) has the following properties:

• ∂2v
∂p̄ir∂p̄

i
s

= 0 for all i ∈ {1, . . . , n} and r, s ∈ {0, . . . , l − 1}.

• ∂2v

∂p̄ir∂p̄
j
s
≥ 0 for all i 6= j ∈ {1, . . . , n} and r, s ∈ {0, . . . , l − 1}.

The first part of the lemma is standard, and comes from linearity of the objective with

respect the probability distribution, which holds also in terms of the cumulative distribu-

tion vector. The second part comes from supermodularity of w. Indeed, by the discrete

equivalent of an integration by parts,10 we have

∂v

∂p̄ir
= E[w(X−i, r)− w(X−i, r − 1)],

and, applying the same transformation to the (difference) function w(x−i, r)−w(x−i, r−1),

∂2v

∂p̄ir∂p̄
j
s

= E[w(X−(i,j), r, s)+w(X−(i,j), r−1, s−1)−w(X−(i,j), r−1, s)−w(X−(i,j), r, s−1)],

which is nonnegative, by supermodularity of w.

To conclude the proof of the proposition, observe that u(p̄) = v(p̄, . . . , p̄). Second-order

derivatives of u only involve second-order derivatives of v. The above lemma then shows

the result. �

We now compare different ways of generating the common distribution p̄.

We will compare two matrices, Ā and B̄, which both have l columns and q rows. For each

matrix, each row is a cumulative probability distribution of the form analyzed above. A

matrix generates a mixture distribution of the type defined earlier, where the univariate

distribution p̄ can take q possible values, and we assume here that each distribution is

equally likely to be selected.11 Matrix Ā generates the mixture distribution for X and B̄

the mixture distribution for Y . We assume that Ā and B̄ have identical column sums.

This ensures that, for each realization k, the expected probability that Xi ≥ k equals the

expected probability that Yi ≥ k, in other words, that the common marginal distribution

of the Xi is the same as the common marginal distribution of the Yi.
12

10The continuous integration by parts would be
∫
u(x)dG(x) =

∫
u′(x)F (x), where G is the usual

cumulative distribution and F is the upper cumulative distribution.
11Generalizations are easy. For example, one could replicate rows to give particular distributions

arbitrarily more weight.
12We do not assume that rows put strictly positive weight on all outcomes. In terms of interdependence,

we therefore allow, for example, that observing the outcome from one random variable rules out some

distributions that did not put any weight on that particular outcome.
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In the theorem below, the hypotheses are the same as those of Theorem 6. But the manner

in which multivariate distributions are generated from matrices is completely different here

and in Theorem 6. And the conclusions of the two theorems are also different.

Theorem 7 Suppose that X and Y are random vectors generated by matrices Ā and B̄,

respectively, such that

• Ā is stochastically ordered, i.e., Āi,k is weakly increasing in i for all k.

• Ā dominates B̄ according to the cumulative column majorization criterion, i.e., for

each k, the kth column vector of Ā majorizes the kth column vector of B̄.

Then X �SPM Y .

The random vectors X and Y have symmetric distributions so that, as far as their compar-

ison is concerned, the supermodular ordering is equivalent to the symmetric supermodular

ordering (see Theorem 5). Just as for Theorem 6, we have examples showing that Theo-

rem 7 does not hold if we relax either the assumption that A is stochastically ordered or

that A �CCM B.13

The proof of Theorem 7, which is in Section D of the Appendix, is based on the following

lemma.

Lemma 2 Suppose that q = 2 and that there exists a nonnegative vector ε such that for

all k ∈ {1, l − 1},

• B̄(1, k) = Ā(1, k) + εk

• B̄(2, k) = Ā(2, k)− εk

• Ā(2, k) ≥ Ā(1, k) + εk

Then, X �SPM Y .

13Jogdeo (1978) showed that for any stochastically ordered row-stochastic matrix A, the distribution

of X generated from it displays association, a dependence concept defined in Esary, Proschan, and

Walkup (1967). It follows from this and Theorem 2 of Meyer and Strulovici (2010) that the distribution

of X dominates its independent counterpart (the independent distribution with identical marginals to

X) according to the supermodular ordering. Jogdeo’s result, weakened to supermodular dominance,

corresponds to the special case of Theorem 7 where the rows of the matrix B are all identical.
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The function u = uw is polynomial in p̄ and hence twice differentiable. Moreover, it is

componentwise convex and supermodular, which implies that its second-order derivatives

are everywhere nonnegative on its domain. We need to show that for any vectors x, y and

ε ≥ 0 such that x+ ε ≤ y, the following inequality holds

u(x) + u(y) ≥ u(x+ ε) + u(y − ε)

Equivalently, we need to show that

u(x+ ε)− u(x) =

∫ 1

0

∑
i

ui(x+ αε)εidα ≤
∫ 1

0

∑
i

ui(y − ε+ αε)εidα = u(y)− u(y − ε),

where ui denotes the ith derivative of u. Let δ = y − ε− x ≥ 0.

ui(y − ε+ αε)− ui(x+ αε) =

∫ 1

0

∑
j

uij(x+ αε+ βδ)δjdβ,

which is nonnegative since all second-order derivatives are nonnegative. Integrating these

inequalities with respect to α shows the result.

The hypotheses of Theorem 7 ensure that the rows of the matrix Ā are “more different”

from one another than are the rows of the matrix B̄. Since the rows represent the possible

cumulative probability distributions from which the n variables are independently drawn,

the hypotheses ensure that for the random vector X, these distributions are more different

than for the random vector Y . Given that the Xi have the same marginal distribution

as the Yi (ensured by the requirement that Ā and B̄ have identical column sums), the

conditions in Theorem 7 can be interpreted as ensuring that aggregate shocks are relatively

more important in the distribution of X while idiosyncratic shocks are relatively more

important in the distribution of Y . At one extreme, where the matrix B̄ has all rows

identical, the mixture distribution reflects no common shock; at the other extreme, where

the matrix A takes the form of the matrix Ā′ identified by Corollary 1, the mixture

distribution displays as much common uncertainty as possible, given the specified marginal

distribution.

9 Characterizations of Difference-Based Orderings

This section generalizes the approach of Section 4 to provide characterizations of a class

of orderings which we call “difference-based orderings,” which have a particular linear
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structure which allows the use of duality theorems. We use the general duality approach

to characterize orders combining supermodularity and componentwise convexity, or full

convexity. Since convexity on lattices is a nontrivial concept, we also show how to char-

acterize it in terms of elementary transformations, which is an interesting result in itself.

Recall from (1) that any class W of functions on L defines an order by f ≺W g ⇔
E[w|f ] ≤ E[w|g] ∀w ∈ W . We begin by stating formally the intuitive fact that larger

classes of functions make it harder to compare distributions, hence result in a coarser

order.

Theorem 8 (Order Monotonicity) If C ⊂ D and f ≺D g, then f ≺C g.

Proof. Trivial and omitted.

Theorem 8 implies that any property of the order generated from a class of objective func-

tions must be inherited by the order generated from any larger class of objective functions.

This implication is illustrated in the next result, which implies that if g dominates f ac-

cording to the stochastic supermodular ordering, then Cov(Yi, Yj) ≥ Cov(Xi, Xj) for any

i 6= j and random vectors X and Y respectively distributed according to f and g.

The Quadratic Ordering We now consider the subset Q of supermodular functions

that are quadratic, i.e., of the form14 w(x) = w0 +
∑

iwixi +
∑

i 6=j wijxixj for some real

coefficients w0 and {wi} and some nonnegative coefficients {wij}i 6=j. Such functions are

supermodular, as is easily checked. Let X and Y denote random vectors distributed

according to f and g, respectively.

Theorem 9 (Quadratic Ordering) f ≺Q g if and only if E[Xi] = E[Yi] for all i and

Cov(Xi, Xj) ≤ Cov(Yi, Yj) for all i 6= j.

Proof. Since for all i, the functions w(x) = xi and w(x) = −xi are in Q, f ≺Q g implies

that
∑

xi∈Li xifi ≤
∑

xi∈Li xigi and
∑

xi∈Li xifi ≥
∑

xi∈Li xigi, where fi (resp. gi) is f ’s

(resp. g’s) marginal distribution along the ith component. Therefore, E[Xi] = E[Yi] for

all i. Since for all i 6= j, w(x) = xixj is in Q, f ≺Q g implies that E[XiXj] ≤ E[YiYj] for

all i 6= j. To prove the reverse implication, observe that for any w(x) = w0 +
∑

iwixi +∑
i 6=j wijxixj for some real coefficients w0 and {wi} and some nonnegative coefficients

14We rule out functions x2
i in order to get an equivalence in the next theorem. For the entire class of

supermodular quadratic functions, necessity of covariance relations is implied by combining Theorems 9

and 8.
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{wij}i 6=j,

E[w|g]− E[w|f ] =
∑
i

wi (E[Yi]− E[Xi]) +
∑
i 6=j

wij [Cov(Yi, Yj)− Cov(Xi, Xj)] ≥ 0,

so E[Xi] = E[Yi] for all i and Cov(Xi, Xj) ≤ Cov(Yi, Yj) for all i 6= j imply f ≺Q g. �

The Componentwise Convex/Concave Ordering In several applications, objective

functions may have other properties than supermodularity. For example, if the objective

is a welfare function and each variable entering the multivariate distribution represents

the random income of an individual, componentwise concavity may express the social

planner’s preference for reducing risk faced by each individual. We now show how the

duality approach in the case of the stochastic supermodular ordering can be extended

to such situations. In what follows, we consider the case of objective functions that are

supermodular and componentwise convex, but the case of supermodular, componentwise

concave objective functions can be analyzed similarly.

In Section 4, we used the fact that supermodular functions are characterized by a list of

inequalities which correspond to nonnegativity of their scalar product with all elementary

transformations of the type defined in 3. To accommodate the introduction of other types

of elementary transformations, let T (S) denote the set of elementary transformations

characterizing S.

A function w is componentwise convex if for any i in N and x, y in L such that xj = yj

for all j 6= i and any λ ∈ [0, 1] such that λx+ (1− λ)y belongs to L, w(λx+ (1− λ)y) ≤
λw(x) + (1− λ)w(y). Let X denote the set of componentwise convex functions on L.

To simplify the exposition, we assume that for each i ∈ N , Li = {0, 1, . . . , li− 1}, that is,

in each dimension, the points in the support are equally spaced. We briefly discuss below

how to extend our characterizations to more general lattices.

For any x and i, let txi denote the function on L that vanishes everywhere except at nodes

x, x+ ei, and x+ 2ei, such that

txi (x) = txi (x+ 2ei) = 1 and txi (x+ ei) = −2, (20)

and let T (X ) denote the set all such functions. When added to the distribution of a

random vector Y , the transformation txi leaves the marginal distributions of Yj, j 6= i,

unaffected and increases the spread of the marginal distribution of Yi, while leaving the

mean of Yi unchanged. Relative to Rothschild and Stiglitz’s (1970) definition of a “mean-

preserving spread”, the elementary transformations defined here are both a generalization,
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in that they are defined for multidimensional distributions, and a specialization, in that,

for the single dimension they affect, they affect values at only three adjacent points in

the lattice.15 As is easily checked, these elementary transformations entirely characterize

componentwise convex functions, that is:

w ∈ X ⇔ w · t ≥ 0 ∀t ∈ T (X ).

Proceeding as in Section 4, we can characterize the set of distributions ordered according

to X as follows.

Theorem 10 (Componentwise Convex Ordering) f ≺X g if and only if there ex-

ist nonnegative coefficients αt, t ∈ T (X ), such that

g = f +
∑

t∈T (X )

αtt.

The proof is analogous to the proof of Theorem 1 and therefore omitted.

For the supermodular ordering, we showed in Section 5 that the case of two dimensions is

special in that, for any two distributions f, g with identical marginals, there is a unique

decomposition of g − f into a weighted sum of elementary transformations t ∈ T (S),

where the weights αt can have arbitrary signs. For the componentwise-convex ordering,

the case of one dimension is special in an analogous sense. Specifically, if n = 1, for

any two distributions f, g with identical means, there is a unique decomposition of g − f
into a weighted sum of elementary transformations t ∈ T (X ), where the weights αt can

have arbitrary signs.16. Given this uniqueness, it follows from Theorem 10 that f ≺X g

if and only if the weight on every elementary transformation in the decomposition is

nonnegative. To identify the weight on each elementary transformation in the unique

decomposition, we adopt the notational conventions used in Section 5 and also note that

for L = {0, 1, . . . , l− 1}, we can write z+ 1 instead of z+ ei. For any z ∈ {0, 1, . . . , l− 3},
15If for some i the points in Li are not equally spaced, the definition (20) can be generalized to

txi (x) = 1, txi (x+ei) = −( |(x+2ei)−(x)|
|(x+2ei)−(x+ei|) , and txi (x+2ei) = |(x+ei)−(x)|

|(x+2ei)−(x+ei)| . Fishburn and Lavalle (1995)

have noted the convenience of working with supports that are evenly-spaced grids, but used summation

by parts rather than defining elementary transformations. Müller and Scarsini’s (2001) definition of a

“mean-preserving local spread” is similar in motivation to our definition but in practice more complex to

work with.
16For one-dimensional distributions f, g on L = {0, 1, . . . , l − 1}, with identical means, the difference

vector δ is fully described by its values at l− 2 points, and there are exactly l− 2 (linearly independent)

elementary transformations defined as in (20)
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there are at most three elementary transformations t ∈ T (X ) that take on non-zero values

at z: tz, t(z−1), and t(z−2). We can then write:

δ(z) = α(z)tz + α(z − 1)t(z−1)(z) + α(z − 2)t(z−2)(z)

= α(z)− 2α(z − 1) + α(z − 2), (21)

where the second line uses the definition of elementary transformations t ∈ T (X ) in (20).

Solving for the weights {α(z)} in terms of {δ(z)} yields α(z) =
∑z

i=0(i+1)δ(z− i). Thus,

for one-dimensional distributions f, g with equal means,

f ≺X g ⇔
z∑
i=0

(i+ 1) [g(z − i)− f(z − i)] ≥ 0 ∀z ∈ {0, 1, . . . , l − 3}. (22)

The inequalities in (22) are the discrete analogs of Rothschild and Stiglitz’s (1970) “in-

tegral conditions”. They show that for one dimension, where the sets of convex and

componentwise convex functions are identical, the extreme rays of the cone of componen-

twise convex functions are the functions w(x) = max{z+1−x, 0} for z ∈ {0, 1, . . . , l−3}.
Furthermore, in this special case of one dimension, there is a one-to-one mapping asso-

ciating with each elementary transformation tz ∈ T (X ) the only extreme ray w(x) =

max{z + 1− x, 0} with which it makes a strictly positive scalar product.

For multidimensional distributions, determining whether g dominates f according to the

componentwise convex ordering requires combining Theorem 10 with the analog of one of

the constructive methods developed in Section 6 for the supermodular ordering.

Combined Properties of Objective Functions As mentioned earlier, one may be

interested in classes of objective functions that satisfy both supermodularity and other

properties. Such additional restrictions are important as they may refine the resulting

order on distributions (from Theorem 8), i.e., allow one to compare distributions that were

not comparable under the stochastic supermodular order. The following result, based on

duality, provides a general method to characterize the order based on objective functions

that combine several properties. Let C and D denote two classes of functions that are

each stable under positive combinations (i.e., C and D are convex cones seen as subsets of

Rd). Also let T and U denote their respective sets of elementary transformations: In this

generalized setting, elementary transformations are the extreme rays of the dual cones of

C and D.

Theorem 11 (Combined Classes) f ≺C∩D g if and only if there exist nonnegative

41



coefficients αt and βu such that

g = f +
∑
t∈T

αtt+
∑
u∈U

βuu.

Proof. The dual cone of the intersection of two polyhedral cones is equal to the

(Minkowski) sum of the dual cones (see Goldman and Tucker, 1956). Therefore, f ≺C∩D g
if and only if g − f belongs to C∗ +D∗, where C∗ and D∗ are respectively the dual cones

of C and D. Since these dual cones are the convex hulls of T and U , the result obtains. �

Theorem 11 applies to any set of properties that can be described by polyhedral cones.

Corollary 2 Let SX denote the set of objective functions that are both supermodular

and componentwise convex. Then f ≺SX g if and only if there exists a sequence of

elementary transformations of either type txi (defined in (20)) or type txi,j (defined in (3))

that, added to f , yield g.

Müller and Scarsini (2010) have derived a similar characterization for the set of objective

functions that are both submodular and componentwise concave, a set they term “in-

framodular”. Like us, they employ duality methods, but rather than combining classes

of functions, along with their associated elementary transformations, they define a single

type of elementary transformation that corresponds to the class of inframodular functions

and prove their equivalence result directly.

Convexity In multidimensional settings, discrete convexity is harder to characterize than

discrete componentwise convexity. The very concept of convexity in discrete multidimen-

sional settings has received a number of definitions, several of which are compared in

Murota and Shioura (2001). We focus here on a notion, natural to economists, of convex-

extensibility. A function w : L→ R is convex extensible if there exists a convex function

w̄ : Rn → R such that w(x) = w̄(x) for all x ∈ L. Concavity is defined similarly. This

definition is natural in economic settings: it characterizes usual convexity or concavity

properties of an objective function defined on all possible outcomes in a situation where

only discrete outcomes are available.17 To apply the duality technique used so far in this

section, we need to characterize convexity by a set of inequalities, each of which corre-

sponds to an elementary transformation. For example, suppose that L = {0, 1, 2}2. In

this case, convexity is clearly a stronger requirement than componentwise convexity: the

two diagonals of the square each imply a convexity relation that involves both dimensions.

As a first guess, then, could it be that discrete convexity on L is characterized by the

17Although natural in economics, this definition of discrete convexity is criticized by Murota (1998).
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componentwise convexity inequalities plus the inequalities w(0, 0) + w(2, 2) ≥ 2w(1, 1)

and w(0, 2) + w(2, 0) ≥ 2w(1, 1)? It turns out that this set of inequalities is not enough

to guarantee convexity. For example, consider the function w on L with the following

values:
w x1 = 0 x1 = 1 x1 = 2

x2 = 0 0 1 2

x2 = 1 1 1 1

x2 = 2 2 1 2

The two inequalities above are satisfied, as are all those defining componentwise convexity.

However, even though (1, 1) is the barycenter of (0, 0), (1, 2) and (2, 1) with equal weights,

we have w(1, 1) > 1
3
(w(0, 0)+w(1, 2)+w(2, 1)), which precludes the existence of a convex

function w̄ extending w.

For real variables, the following relations are equivalent for any convex set X of Rn and

w : X → R:

w(αx+ (1− α)y) ≤ αw(x) + (1− α)w(y) ∀(x, y, α) ∈ X 2 × [0, 1]

w

(
p∑
i=1

αixi

)
≤

p∑
i=1

αiw(xi) ∀(x, α) ∈ X p ×∆p−1

However, this equivalence fails for discrete variables, as the above example illustrates. In

that example, all convexity conditions involving convex combinations of two variables are

satisfied, but convexity is violated by a convex combination of three variables. The reason

is that the usual induction argument to reduce a p-variable convex relation to a 2-variable

one fails, as the intermediate convex combinations it involves typically do not belong to

the lattice.

How, then, can we characterize convex-extensibility? What convexity inequalities must

a function w defined on an n-dimensional lattice satisfy in order to guarantee that it

can be extended to a convex function of continuous variables? The answer is that one

needs to consider only convex combinations of at most (n + 1) variables. The following

characterization is new to our knowledge, although a similar statement based on epigraph

comparisons for a slightly different class of functions appears in Kiselman (2005), and a

method of proof using LP duality for local convex extensions is given in Murota (2003).

Theorem 12 (Discrete Convexity) Let L denote any finite Cartesian lattice of Rn.

The following two statements are equivalent:

• (i) w is convex extensible.
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• (ii) For all (x0, . . . , xn) ∈ L and α ∈ ∆n,

w

(
n∑
i=0

αixi

)
≤

n∑
i=0

αiw(xi).

Proof. Clearly (i) implies (ii). We now show the reverse. For all x ∈ Rn, Let

w̄(x) = sup
(p,γ)∈Rn×R

{p · x+ γ|p · y + γ ≤ w(y) ∀y ∈ L} . (23)

By construction, w̄ is convex and such that w̄(x) ≤ w(x) for all x ∈ L. We will show that

w̄(x) ≥ w(x) for all x ∈ L, which will conclude the proof. Since L is finite, the number d

of constraints defining (23) is finite, and the objective is well defined and finite. By strong

LP duality (see e.g. Bertsimas and Tsitsiklis, 1997, Theorem 4.4), this implies that for

all x ∈ Rn,

w̄(x) = inf
λ∈Rd

{∑
y∈L

λyw(y)|
∑
y∈L

λyy = x,
∑
y∈L

λy = 1, λy ≥ 0

}
.

Moreover, there exists a basic feasible solution λ∗ ∈ Rd to this dual program, i.e., such

that λ∗ vanishes except for a set Y (x) of at most n + 1 components (see Bertsimas and

Tsitsiklis, Theorem 2.4). That is,

w̄(x) =
∑
y∈Y (x)

λ∗yw(y).

From (ii), this implies that w̄(x) ≥ w(x), which concludes the proof.18 �

Theorem 12 allows us to characterize the convex order in terms of a set of elementary

transformations. For each subset χ = {x0, . . . , xn} ⊂ L of n + 1 elements and weights

α ∈ ∆n such that y =
∑n

i=0 αixi ∈ L \ χ, let t(χ, α) denote the function on L such that

t(xi) = αi for 0 ≤ i ≤ n, t(y) = −1, and t(x) = 0 for x ∈ L \ (χ ∪ {y}), and let Tx denote

the set of all such transformations. Let Cx denote the set of convex-extensible functions

on L. Proceeding as for Theorem 1 and using Theorem 12, we get the following result:

Theorem 13 (Convex Ordering) f ≺Cx g if and only if there exist nonnegative co-

efficients {αt}, t ∈ Tx, such that

g = f +
∑
t∈T x

αtt.

18The result can also be proved by adapting the approach of Kiselman (2005), by showing that the

epigraph of w in Zn×R is Zn×R convex. With this approach, Carathéodory’s theorem is used to reduce

the number of convex combinations entering the characterization.
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Theorem 3 showed that for the set of elementary transformations defined in equation (3)

corresponding to the supermodular ordering, none of the transformations is redundant.

An analogous result does not hold for the convex order. For example, consider for L =

{0, 1, 2}2 the 3-point convex combination where (0, 0) and (2, 0) receive weight 1/4 and

(1, 2) receives weight 1/2. The resulting barycenter is (1, 1). In this case, however, the

convex combination can be decomposed into two simpler ones, one putting weights 1/2

on (1, 2) and (1, 0), and the other putting weights 1/2 on (0, 0) and (2, 0). In terms of

elementary transformations, we have

t({(0, 0), (2, 0), (1, 2)}, (.25, .25, .5)) = t({(1, 2), (1, 0)}, (.5, .5))+
1

2
t({(0, 0), (2, 0)}, (.5, .5)).

Therefore, some “elementary transformations” in Tx are redundant.

For the class of supermodular and convex objective functions, Theorem 11 implies that

f ≺S∩Cx g if and only if g can be obtained by adding to f a positive sum of elementary

transformations from T (S) and Tx. In this case, redundancy is even more severe. In fact,

preliminary investigation suggests, for the case of two dimensions, that one can dispense

with all elementary transformations based on 3-point convex combinations.

10 Relation to Copulas

An increasingly popular way to think about interdependence across random variables

is the concept of copulas. A common view is that copulas capture interdependence by

separating marginal distributions from joint distributions. This view is based on Sklar’s

seminal theorem, which we recall here. For simplicity let us say that C is a copula if it is

the joint distribution of n uniform random variables.

Theorem 14 (Sklar, 1959) Let F be any distribution function of n variables, with

marginals F1, . . . , Fn. There exists a copula C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

Suppose that copulas indeed contain all interesting information about interdependence.

There still remains the task of comparing copulas for different distributions. If the com-

parison of two joint distributions depends only on their copulas, how should one compare

these copulas? A natural idea, followed by Decancq (2007) is to apply the stochastic

supermodular ordering to copulas rather than to the distributions themselves.
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Our analysis challenges the use of copulas for comparing interdependence. Firstly, recall

that Theorem 1 implies that for two distributions to be comparable according to the

supermodular ordering, they must have identical marginals. Therefore, the apparent gain

provided by copulas to abstract from differing marginal distributions disappears when

interdependence comparisons are based on the supermodular ordering.

Secondly, the use of copulas can only increase the complexity of the comparison. With

discrete support, there is an uncountable infinity of copula representations for any dis-

tribution F . The only constraint (other than the usual conditions for any function to

be a copula) is that copulas must coincide on the range of values of the marginal distri-

butions. This point can be illustrated by the simplest example: suppose that L = L2,

i.e. L consists of a one-dimensional two-point support, and that F (0) = 1/4. Then,

any nondecreasing function C : [0, 1] → [0, 1] such that C(1/4) = 1/4, C(0) = 0 and

C(1) = 1 provides a representation of F in Sklar’s theorem. It is generally impossible to

reconstruct a distribution from its copula. To illustrate, suppose in the previous example

that C(x) = 0 for x < 1/4, C(x) = 1/4 for 1/4 ≤ x < 1/2, C(x) = 1/2 for 1/2 < x < 1

and C(1) = 1. One could mistakenly infer that there are three points in the support of

F , since the copula has three jumps. Or, if one already knows the initial distribution has

a two-point support, how to determine which value of 1/4 or 1/2 corresponds to F (0)?

One could impose the rule of picking a particular copula that is constant between any two

values in the range of F , but then the copula coincides with F , except that the domain is

scaled by the values of marginal distributions. Therefore, even with this rule, copulas do

not offer any advantage compared to working with the initial distributions. In conclusion,

the use of copulas should be rejected because i) distributions can only be compared if they

have identical marginals, so that advantage of copulas disappears, and ii) copulas are only

well defined on the range of values of marginal distributions, and contain no other useful

information. To compare copulas according to the stochastic supermodular ordering, one

has to essentially reconstruct the initial joint distribution.
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Appendices

A Appendix: Implementation of the Double Descrip-

tion Method

B Appendix: Proof of Proposition 2

C Appendix: Proof of Theorem 6 and Its Corollary

The proof of Theorem 6 is based on the following two lemmas.

Lemma 3 Suppose that X ≺SSPM Y are two-dimensional and that Z is a p-dimensional

(p arbitrary) random vector independent of X and Y . Then (X,Z) ≺SSPM (Y, Z).

Proof. We need to check that Ew(X,Z) ≤ Ew(Y, Z) for all w symmetric and supermod-

ular. For each z in Rp, let r(z) = Ew(X, z) and s(z) = Ew(Y, z). For each z, the function

w(·, Z) is symmetric and supermodular in its two arguments, and so X ≺SSPM Y implies

that r(z) ≤ s(z) for all z. Taking expectations with respect to Z (and using independence

of Z) then shows the result. �

Let X and Y be two-dimensional random vectors generated by 2×m-matrices A and B,

respectively. Suppose that

B = A+
m∑
k=2

εkEk,

where εk ≥ 0 and Ek is the matrix with zeros everywhere except for columns k − 1 and

k, where it is defined by

(Ek)1,k−1 = (Ek)2,k = −1

and

(Ek)1,k = (Ek)2,k−1 = 1

Intuitively, B is putting, for each pair of consecutive prizes, less probability on the second

individual (row) getting the lower of the two prizes and more weight on him getting the

better one. Given this, one would expect that B is more equal than A if A was treating

individual one (first row) better than the second one.
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This intuition is captured by the lemma to follow. With two dimensions the symmetric

supermodular ordering is characterized by the following symmetric supermodular func-

tions:

wk(X) = 1X1≥ck,X2≥ck

for each k ≥ 2 and, for k 6= l greater than 2,

wkl(X) = 1X1≥ck,X2≥cl + 1X1≥cl,X2≥ck ,

where c1 < c2 < · · · < cm is an arbitrary vector of indices decreasing with prize values (so

that the first prize has the lowest index, etc.). The reason why indices are greater than 2

is that for k = 1 the indicator-based conditions above are always satisfied, since all prizes

have indices above c1. For each k, Ewk(X) ≤ Ewk(Y ) is equivalent to

0 ≤

(
m∑
j=k

β1j

)(
m∑
j=k

β2j

)
−

(
m∑
j=k

α1j

)(
m∑
j=k

α2j

)
, (24)

where α’s and β’s are the entries of matrices A and B, respectively. Similarly, for each

k 6= l greater than 2, Ekl(X) ≤ Ewkl(Y ) is equivalent to, using the more compact notation

of cumulative matrices Ā and B̄ with entries ᾱ and β̄,

0 ≤ β̄1kβ̄2l − ᾱ1kᾱ2l + β̄1lβ̄2k − ᾱ1lᾱ2k. (25)

Lemma 4 Suppose that for each k ∈ {2, . . .m},
m∑
j=k

α2j ≥
m∑
j=k

α1j + εk.

Then, α and β satisfy (24) for each k, and (25) for each k 6= l.

Proof. Since all εj’s simplify in the above β sums except for εk, Condition (24) becomes,

after simplification,

εk

[
m∑
j=k

α2j −

(
m∑
j=k

α1j + εk

)]
,

which is nonnegative by assumption. For each k 6= l greater than 2, Condition (25) is

proved as follows. Since by construction β̄1k = ᾱ1k + εk and β̄2k = ᾱ2k − εk for all k ≥ 2,

therefore the condition simplifies to

0 ≤ εk [ᾱ2l − (ᾱ1l + εl)] + εl [ᾱ2k − (ᾱ1k + εk)] ,
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both terms of which are nonnegative by assumption. �

When α and β represent probability distributions, the conclusion of Lemma 4 is that

X ≺SSPM Y .

Corollary 3 Suppose that α and β consist of probability vectors satisfying the assump-

tion of Lemma 4. Then,

X ≺SSPM Y.

The reason for stating Lemma 4 and its corollary separately is that we wish to apply

Lemma 4to intermediary transformations of matrices A and B whose rows do not nec-

essarily represent probability distributions, as will be clear from the final proof of this

section. The corollary simply states how the conclusion of the Lemma should be inter-

preted in our context, when A and B consist of probability distributions. The condition in

Lemma 4 implies that the one-dimensional distribution generated by the second row of A

assigns lower prizes (in the fist-order stochastic dominance sense) than the one generated

by the first row of A, and is strictly stronger than that, since the FOSD inequalities must

hold by more than εk for each k.

We can now conclude the proof of Theorem 6. We first show that Ā ≺SSPM B̄so and

then that B̄so ≺SSPM B̄, where B̄so is the matrix obtained from B̄ by reordering each of

its column from the smallest to the greatest element. This will then prove the result, by

transitivity. Notice that B̄so is essentially a stochastic reordering of the matrix B so as to

systematically put more probability of lower prizes to high index individuals. With this

interpretation, it is not surprising that B̄so ≺SSPM B̄. Since A is already assumed to be

stochastically ordered the comparison assumed on A and B carries over to a comparison

between A and Bso, an so it is not surprising either that A ≺SSPM Bso.

Proof that Ā ≺SSPM B̄so. We use the following algorithm: We start by transforming

the last column of Ā into the last column of B̄ by applying to Ā a sequence of elementary

transformations εmEm of the type described in Lemma 4, only involving the last column

of Ā and only one pair of rows at each time, and such that, after each step, the resulting

matrix is still stochastically ordered.19 Such a construction is given by Hardy et al.

(1952). At each step, the last column of the resulting matrix is stochastically ordered,

19In terms of A, these transformations involve only the last two columns of A. Note that Em’s have

no impact on cumulative sums for k < m so they only affect Ā through its last column. For convenience,

we state the result in terms of the cumulative matrix Ā.
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and remaining columns are untouched, so Lemma 4 can be applied. Lemma 4 combined

with Lemma 3 ensures that at each step the new matrix SSPM dominates the previous

and, by transitivity, Ā. Once the last column of Ā has been transformed into that B̄so, one

proceed to do the same for the second to last column of Ā, etc. Once the second column

has been transformed, the resulting matrix is B̄so itself, which shows by transitivity, that

Ā ≺SSPM B̄so.

Proof that B̄so ≺SSPM B̄. Columns of B̄so and B̄ have the same entries, only in a

different order, since B̄so’s entries are increasing with the row index, for fixed columns.

Without loss of generality, reset the entries in each column of B̄so as 1, 2, . . . , n, with

the same correspondence for B̄. The goal is to find an algorithm that rearranges these

entries to match B̄’s. Resetting entries is for convenience only in order to emphasize the

workings of the algorithm. In practice, the elementary transformations used will match

actual entries of B̄so. Starting from the last row, n, of B̄so, whose entries are equal to n

after relabeling, we will move these ’n’-labeled entries upwards, gradually, so as to position

them as in B̄. We will do this by a sequence of entry permutations between rows n and

i for i starting from n − 1 until i reaches 1. We will do this so that, at each step i, the

rows above n remain stochastically ordered, and the nth row remains stochastically higher

than rows above i. This guarantees that applications of Lemma 4, at each step, is valid

and so that the transformed matrix always SSPM dominates the previous one and, by

transitivity, B̄so. Thus, starting with rows n and n−1, flip entries of B̄so for each column

j in which B̄nj 6= n. The result is that some entries of in the last row of B̄so are now equal

to n− 1, while entries in its (n− 1) row are equal to n, for exactly those columns where

B̄nj 6= n. The result is that now the n and n− 1 rows of B̄so are no longer stochastically

ordered, but both rows still dominate all rows with indices less than n − 2. The next

step is to flip entries between the n and n − 2 rows of the resulting matrix, for columns

where its nth-row entry does not match that of B̄. As a result, the nth row now contains

(possibly) entries labeled ‘n− 2’ while the n− 2 two contains n− 1 entries. Notice that,

i) the n, n− 1, and n− 2 rows still dominate all rows with indices less than n− 3, and ii)

the n−1 row dominates the n−2 row. The reason for the last point is that the n−2 row

inherited an n− 1 only if the n− 1 row inherited an n entry. Proceeding systematically

by decreasing the row index each time, the result is that the nth row now has the same

entries as B̄’s, and that the first n− 1 rows of the resulting matrix are still stochastically

ordered. Applying next to the n− 1 row what was done to the n row, we can transform

it into the n− 1 row of B̄ while preserving at each step the stochastic ordering of the first

n − 2 rows and guaranteeing that the n − 1 row dominates rows with which it has not
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yet been flipped. Applying this larger algorithmic loop to each row, in decreasing index

order, eventually transforms B̄so into B̄ through a sequence of steps that increase in the

SSPM sense, which proves the result. �

Proof of the Corollary to Theorem 6

The matrix A generating (among all row-stochastic matrices with matching column sums)

the worst distribution with respect to SSPM dominance is constructed as follows. For any

real number x, let bxc denote the largest integer below x. Set ai,1 = 1 for all i ≤ i1 = bnp1c,
ai1+1,1 = np1− i1, and ai,1 = 0 for all i > bi1 + 1c. This assignment maximizes the entries

of the low-index rows of the first column, subject to A’s row-stochasticity constraint and

to the sum of entries in the first column being equal to np1. Put differently, the first

column of A, seen from top down, majorizes all vectors with entries less than one and

summing to np1. Remaining vectors are defined similarly: the second column vector is

the vector that majorizes all vectors that respect A’s row-stochasticity and the summing

up to p2. Precisely, set ai,2 = 0 for all i ≤ i1 since these rows already have ones in the first

column, ai1+1,2 = min{1−ai1+1,1, np2}. The first argument of the minimizer expresses the

constraint that the row sum cannot exceed one, and the second argument that entries in

the second column cannot exceed np2. Finally, set ai,2 = 1 for all i’s between i1 + 1 and

i2 = i1 + bnp2− ai1+1,2c, and ai2+1,2 = np2− ai1+1,2− (i2− i1). Thus, after completing the

i1 + 1 row with whatever probability remains after setting ai1+1,1, one sets entries below

equal to 1 subject to the column sum being less than np2, and put whatever fraction

remains in the next entry below. Remaining columns are constructed similarly.

By construction, A is stochastically ordered, as is easily checked. Moreover, given any

row-stochastic matrix B with the same column sums as A, it is intuitive and easy to check

that A �CCM B since A puts as much weight as possible in the first columns of the first

rows and, equivalently, in the last columns of the last row. Precisely, for any column k

and row l, the sum of entries in A over all columns with index above k and rows with

index above l is maximal, subject to row-stochasticity and column-sum constraints.

D Appendix: Proof of Theorem 7

Let Ā and B̄ denote cumulative-probability matrices (i.e., entries are increasing with the

column index and less than one) of equal dimensions. By assumption Ā stochastically
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ordered means that āik is increasing in i. Finally, suppose that, for each k, the column

vector Āk majorizes the column vector B̄k.

We wish to show that X �SPM Y or, abusing notation, Ā �SPM B̄, where Ā and B̄ are

the cumulative matrices generating X and Y respectively. We break the proof in several

steps.

D.1 B̄ stochastically ordered

Assume for now that B̄ is also stochastically ordered, so that b̄ik is increasing in i.

Further suppose for now that B̄ has strictly monotonic entries across row and column

indices and let

χ = min
i,j
{b̄i+1,j − b̄i,j, b̄i,j − b̄i,j+1} > 0.

Here and throughout, we exclude the first column of ones that could conventionally appear

in cumulative probability matrices. We will simply say that B̄ is “strictly monotonic.”

Let k denote the largest column index such that Āk 6= B̄k.

Lemma 5 There exists a cumulative-probability matrix C that is stochastically ordered,

such that Ck̃ = B̄k̃ for all k̃ ≥ k, whose columns majorize B̄’s, and such that Ā �SPM C.

Proof.

We proceed by contradiction. Let C solve the optimization problem

inf
E

∑
i≥2

∑
j≥i

ej,k − b̄j,k (26)

subject to the following constraints:

1. E satisfies row monotonicity (i.e., entries of E are decreasing in the column index),

2. E is stochastically ordered (i.e., entries of E are increasing in the row index),

3. E dominates B̄ according to the cumulative column criterion (i.e., each column of

E’s majorizes the corresponding column of B̄),

4. Ā dominates E according to the stochastic supermodular ordering
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5. Ek̃ = B̄k̃ for all k̃ < k.

The set of E’s satisfying these five constraints is compact (as a closed, bounded subset of

a finite dimensional space) and nonempty (since Ā belongs to it), and the objective (26)

is continuous. Therefore, its minimum is reached by some C. Moreover, the objective is

nonnegative for all E since Ek majorizes B̄k. Finally, the minimum is equal to zero if and

only if Ck is equal to B̄k. We now show that this last property indeed holds, which will

prove the lemma.

Suppose by contradiction that Ck 6= B̄k.

Since Ck majorizes B̄k and Ck 6= B̄k, there exists a row i such that

• ci,k ≤ b̄i,k

• ci+1,k ≥ b̄i+1,k

• One of the previous two inequalities is strict.

We will show that it is possible to increase ci,k by some small amount ε, and decrease ci+1,k

by the same amount, while satisfying all 5 constraints of the minimization problem (26).

Such change only affects the i + 1 partial sum of (26), and decreases it by an amount ε,

which contradicts the assumption that C minimizes (26).

First, we observe that

• ci,k ≤ ci+1,k − χ, from the previous two inequalities.

• ci,k ≤ ci,k−1 − χ, since ci,k ≤ b̄i,k ≤ b̄i,k−1 − χ = ci,k−1 − χ.

• cj,k̃ = b̄j,k̃ for all k̃ < k and all j.

Therefore, it is possible to strictly increase ci,k, up to an amount χ, without violating

row-monotonicity of row i.

Let k̄ denote the largest column index such that ci+1,k̃ = ci+1,k for all k̃ ∈ [k, k̄]. Possibly,

k̄ = p, where p is number of columns of the matrices Ā and B̄.

If k̄ = k, it means that one can decrease ci+1,k without violating row-monotonicity of row

i+ 1.
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Now consider the harder case where k̄ > k.

Define the matrix D that is identical to C for all rows other than i and i + 1 and for all

columns outside of [k, k̄], and such that

• di,k̃ = ci,k̃ + ε

• di+1,k̃ = ci+1,k̃ − ε = ci+1,k − ε

for all k̃ ∈ [k, k̄] where ε is some positive constant that we will determine later.

By construction, if ε is small enough, this transformation respects row-monotonicity for

rows i and i+ 1: For i, this comes from the earlier observation that ci,k ≤ ci,k+1 − χ. For

i+ 1, this comes from the definition of k̄.20

Furthermore, we now check that D is still stochastically ordered, provided that ε is such

that ci,k + ε ≤ ci+1,k − ε, which holds for all ε ≤ χ/2. This is clearly true for all columns

outside of [k, k̄], where D is identical to C. For any column k̃ ∈ [k, k̄], notice that

di,k̃ ≤ di,k = ci,k + ε ≤ ci+1,k − ε = di+1,k̃,

which shows the result.

Finally, the columns of D still majorize those of B. For this, we only need to check that∑
j≥i+1

dj,k̃ ≥
∑
j≥i+1

b̄j,k̃ (27)

for all k̃ ∈ [k, k̄]. All other majorization inequalities hold trivially since D has the same

relevant partial sums as C for columns outside of [k, k̄] and for row indices other than

i+ 1. By construction, we have∑
j≥i+2

dj,k̃ =
∑
j≥i+2

cj,k̃ ≥
∑
j≥i+2

b̄j,k̃ (28)

Moreover,

di+1,k̃ = ci+1,k − ε ≥ b̄i+1,k − ε ≥ b̄i+1,k̃

where the last inequality holds for ε ≤ χ. Combining this with (28) implies (27).

20If k̄ = p, we note that, necessarily, ci+1,k ≥ b̄i,k + χ > 0, so we can indeed decrease the entries of C’s

i+ 1-row by an amount ε without creating negative entries.
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Such transformation is such that C �SPM D, from Lemma 2. By transitivity, this implies

that Ā �SPM D.

This contradicts the hypothesis that C was minimizing the objective, since the ε reduction

has strictly improved the partial sum of (26) starting from row i+ 1 and left other partial

sums unaffected. This proves the lemma. �

To conclude the proof of Theorem 7, for B̄ strictly monotonic, we apply the above lemma

inductively on k.

If B̄ is not strictly monotonic, we perturb Ā and B̄ by taking a limit of cumulative

matrices An, Bn with χn = 1/n converging to Ā, B̄ and such that An majorizes Bn, and

apply the previous analysis to show that

An �SPM Bn,

for each n. Taking the limit as n goes to infinity then shows the result.

To show that a perturbation of order 1/n is feasible, for n large enough, simply scale down

entries of Ā and B̄ by a factor δn = 1 − (p + q)/n (where p × q are matrix dimensions

(recall that we have excluded the first column of ones that may appear in cumulative

matrices) and add ei,j = 1
n
(i + j) to A and B. This ensures that An and Bn are strictly

increasing with factor 1/n with entries less than 1. Moreover, An majorizes Bn.

Thus we have shown the result when B̄ is stochastically ordered.

D.2 General Case

In general, B̄ is not stochastically ordered. Let B̄so denote the stochastically ordered

version of B̄, i.e., the matrix whose kth column consists of the entries of the kth column

of B̄, ordered from the smallest to the largest. It is easy to check that B̄so is also row

monotonic, i.e., that the entries of B̄so of any given row are decreasing in the column

index. Indeed, the ith entry of B̄so
k is the ith smallest entry in the column B̄k. Since B̄

is row monotonic by assumption, that entry must be larger than the ith smallest entry

in the column B̄k+1, which is the ith entry of B̄so
k+1. Applying the previous analysis to Ā

and B̄so, one concludes that Ā �SPM B̄so. Therefore, we will be done if we show that

B̄so �SPM B̄.

To see this we exploit the algorithm used in the proof of Theorem 6 to convert B̄so
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to B̄ by the sequence of pairwise row transformations performed in Section C, and by

applying Lemma 2 at each step to show that each transformation results in a lower

matrix that is lower according to the supermodular order. The only difficulty is to ensure

that each step preserves row monotonicity. Indeed, Lemma 2 only applies to rows that

satisfy this constraint. Consider the first induction step of the conversion from B̄so to

B̄, which consists of pairwise transformations between the nth row of B̄so and its ith

row for i decreasing from n − 1 to 1. Let Di denote the matrix resulting from each of

these transformations, and let D = D1 denote the resulting matrix at the end of this

first induction step. The submatrix of D where the last row has been removed is the

stochastic ordering of the submatrix of B̄ where the last row has been removed. In

particular, it satisfies row monotonicity. Moreover, the jth row of Di equals that of D

for j ≥ i and j 6= n, and equals that of B̄so for j < i. All rows for j < n satisfy row

monotonicity. There remains to show that nth row of Di is satisfies row-monotonicity, for

each i. The nth entry dink of the column Di
k consists of the ith largest entry δik of B̄so

k ,

if the entry dnk of Dk is smaller than δik, and to dnk otherwise. Now consider any two

consecutive columns k − 1 and k. We must show that din,k ≤ din,k−1. If din,k = dnk, then

we use that dnk ≤ dn,k−1 ≤ di,k−1. If din,k = δi,k, then we use that δi,k ≤ δi,k−1 ≤ din,k−1.

This establishes row monotonicity and, therefore, the applicability of the Lemma 2.
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